These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 8357832)
1. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits. Nagel K; Voigt J Biochim Biophys Acta; 1993 Aug; 1174(2):153-61. PubMed ID: 8357832 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G. Voigt J; Nagel K Eur J Biochem; 1990 Dec; 194(2):579-85. PubMed ID: 2269283 [TBL] [Abstract][Full Text] [Related]
3. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis. Sander G; Marsh RC; Parmeggiani A Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the ribosome-dependent uncoupled GTPase reaction catalyzed by polypeptide chain elongation factor G. Arai N; Kaziro Y J Biochem; 1975 Feb; 77(2):439-47. PubMed ID: 165176 [TBL] [Abstract][Full Text] [Related]
5. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide. Marsh RC; Parmeggiani A Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016 [TBL] [Abstract][Full Text] [Related]
6. Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin. Sander G; Ivell R; Crechet JB; Parmeggiani A Biochemistry; 1980 Mar; 19(5):865-70. PubMed ID: 6101963 [TBL] [Abstract][Full Text] [Related]
7. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state. Langer JA; Jurnak F; Lake JA Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891 [TBL] [Abstract][Full Text] [Related]
8. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T]. Smailov SK; Kakhniashvili DG; Gavrilova LP Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of the 50S ribosomal subunit and several 50S subparticles in EF-T-and EF-G-dependent activities. Sander G; Marsh RC; Voigt J; Parmeggiani A Biochemistry; 1975 May; 14(9):1805-14. PubMed ID: 1092342 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2. Nygård O; Nilsson L Eur J Biochem; 1989 Feb; 179(3):603-8. PubMed ID: 2537725 [TBL] [Abstract][Full Text] [Related]
11. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations. Mesters JR; Potapov AP; de Graaf JM; Kraal B J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin. Crechet JB; Parmeggiani A Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979 [TBL] [Abstract][Full Text] [Related]
13. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. I. Factor-independent GTPase and ATPase of ribosomal preparations]. Kakhniashvili DG; Smailov SK; Gavrilova LP Biokhimiia; 1980 Nov; 45(11):1999-2012. PubMed ID: 6113012 [TBL] [Abstract][Full Text] [Related]
14. Requirement of proteins S5 and S9 from 30S subunits for the ribosome-dependent GTPase activity of elongation factor G. Marsh RC; Parmeggiani A Proc Natl Acad Sci U S A; 1973 Jan; 70(1):151-5. PubMed ID: 4346030 [TBL] [Abstract][Full Text] [Related]
15. Regulation of elongation factor G GTPase activity by the ribosomal state. The effects of initiation factors and differentially bound tRNA, aminoacyl-tRNA, and peptidyl-tRNA. Voigt J; Nagel K J Biol Chem; 1993 Jan; 268(1):100-6. PubMed ID: 8416917 [TBL] [Abstract][Full Text] [Related]
16. Ribosomal protein L7/L12 is required for GTPase translation factors EF-G, RF3, and IF2 to bind in their GTP state to 70S ribosomes. Carlson MA; Haddad BG; Weis AJ; Blackwood CS; Shelton CD; Wuerth ME; Walter JD; Spiegel PC FEBS J; 2017 Jun; 284(11):1631-1643. PubMed ID: 28342293 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies to epitopes in both C-terminal and N-terminal domains of Escherichia coli ribosomal protein L7/L12 inhibit elongation factor binding but not peptidyl transferase activity. Nag B; Tewari DS; Traut RR Biochemistry; 1987 Jan; 26(2):461-5. PubMed ID: 2435318 [TBL] [Abstract][Full Text] [Related]
19. The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G. Chinali G; Parmeggiani A J Biol Chem; 1980 Aug; 255(15):7455-9. PubMed ID: 6104671 [TBL] [Abstract][Full Text] [Related]
20. Escherichia coli stringent factor binds to ribosomes at a site different from that of elongation factor Tu or G. Richter D; Nowak P; Kleinert U Biochemistry; 1975 Oct; 14(20):4414-20. PubMed ID: 1100104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]