BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8357848)

  • 1. A carbon-13 nuclear magnetic resonance investigation of the metabolic fluxes associated with glucose metabolism in human erythrocytes.
    Schrader MC; Eskey CJ; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):162-78. PubMed ID: 8357848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of fluxes through the pentose phosphate pathway in erythrocytes from individuals with sickle cell anemia by carbon-13 nuclear magnetic resonance spectroscopy.
    Schrader MC; Simplaceanu V; Ho C
    Biochim Biophys Acta; 1993 Sep; 1182(2):179-88. PubMed ID: 8357849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of erythrocyte pentose pathway flux with [2-13C]glucose and 1H NMR analysis of the lactate methyl signal.
    Delgado TC; Castro MM; Geraldes CF; Jones JG
    Magn Reson Med; 2004 Jun; 51(6):1283-6. PubMed ID: 15170851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.
    Flanigan I; Collins JG; Arora KK; MacLeod JK; Williams JF
    Eur J Biochem; 1993 Apr; 213(1):477-85. PubMed ID: 8477719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative determination of the main glucose metabolic fluxes in human erythrocytes by 13C- and 1H-MR spectroscopy.
    Messana I; Misiti F; el-Sherbini S; Giardina B; Castagnola M
    J Biochem Biophys Methods; 1999 Feb; 39(1-2):63-84. PubMed ID: 10344501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C and 31P NMR studies of glucose and 2-deoxyglucose metabolism in normal and enzyme-deficient human erythrocytes.
    Ferretti A; Bozzi A; Di Vito M; Podo F; Strom R
    Clin Chim Acta; 1992 Jun; 208(1-2):39-61. PubMed ID: 1638753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulatory role for magnesium in glycolytic flux of the human erythrocyte.
    Laughlin MR; Thompson D
    J Biol Chem; 1996 Nov; 271(46):28977-83. PubMed ID: 8910548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.
    van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ
    Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
    Berthon HA; Kuchel PW; Nixon PF
    Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular Mg2+ regulates ADP phosphorylation and adenine nucleotide synthesis in human erythrocytes.
    Page S; Salem M; Laughlin MR
    Am J Physiol; 1998 May; 274(5):E920-7. PubMed ID: 9612251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C n.m.r. isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes.
    Berthon HA; Bubb WA; Kuchel PW
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):379-87. PubMed ID: 8257428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.
    Inbar L; Lapidot A
    J Bacteriol; 1991 Dec; 173(24):7790-801. PubMed ID: 1744035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose.
    Lee WN; Boros LG; Puigjaner J; Bassilian S; Lim S; Cascante M
    Am J Physiol; 1998 May; 274(5):E843-51. PubMed ID: 9612242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos.
    Schwender J; Ohlrogge JB; Shachar-Hill Y
    J Biol Chem; 2003 Aug; 278(32):29442-53. PubMed ID: 12759349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inorganic phosphate on erythrocyte pentose phosphate pathway activity.
    Sagone AL; Metz EN; Balcerzak SP
    Biochim Biophys Acta; 1972 Jan; 261(1):1-8. PubMed ID: 5012466
    [No Abstract]   [Full Text] [Related]  

  • 19. A multinuclear NMR study of 2,3-bisphosphoglycerate metabolism in the human erythrocyte.
    Oxley ST; Porteous R; Brindle KM; Boyd J; Campbell ID
    Biochim Biophys Acta; 1984 Sep; 805(1):19-24. PubMed ID: 6477971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C and 31P NMR studies of the pentose phosphate pathway in human erythrocytes.
    Kuchel PW; Berthon HA; Bubb WA; McIntyre LM; Nygh NK; Thorburn DR
    Biomed Biochim Acta; 1990; 49(2-3):S105-10. PubMed ID: 2167075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.