These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8358293)

  • 1. Effects of alanine substitutions in alpha-helices of sperm whale myoglobin on protein stability.
    Pinker RJ; Lin L; Rose GD; Kallenbach NR
    Protein Sci; 1993 Jul; 2(7):1099-105. PubMed ID: 8358293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of myoglobin by multiple alanine substitutions in helical positions.
    Lin L; Pinker RJ; Phillips GN; Kallenbach NR
    Protein Sci; 1994 Sep; 3(9):1430-5. PubMed ID: 7833805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-helix stability and the native state of myoglobin.
    Lin L; Pinker RJ; Kallenbach NR
    Biochemistry; 1993 Nov; 32(47):12638-43. PubMed ID: 8251481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Ala-->Gly mutations in different helices affect the stability of the apomyoglobin molten globule.
    Luo Y; Baldwin RL
    Biochemistry; 2001 May; 40(17):5283-9. PubMed ID: 11318652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chain length dependence of apomyoglobin folding: structural evolution from misfolded sheets to native helices.
    Chow CC; Chow C; Raghunathan V; Huppert TJ; Kimball EB; Cavagnero S
    Biochemistry; 2003 Jun; 42(23):7090-9. PubMed ID: 12795605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the B helix in early folding events in apomyoglobin: evidence from site-directed mutagenesis for native-like long range interactions.
    Nishimura C; Wright PE; Dyson HJ
    J Mol Biol; 2003 Nov; 334(2):293-307. PubMed ID: 14607120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phe-46(CD4) orients the distal histidine for hydrogen bonding to bound ligands in sperm whale myoglobin.
    Lai HH; Li T; Lyons DS; Phillips GN; Olson JS; Gibson QH
    Proteins; 1995 Aug; 22(4):322-39. PubMed ID: 7479707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single tryptophanyl substitutions affect the structure of apomyoglobin.
    Sirangelo I; Tavassi S; Irace G
    Boll Soc Ital Biol Sper; 1998; 74(9-10):83-9. PubMed ID: 10904557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circularly permuted myoglobin possesses a folded structure and ligand binding similar to those of the wild-type protein but with a reduced thermodynamic stability.
    Fishburn AL; Keeffe JR; Lissounov AV; Peyton DH; Anthony-Cahill SJ
    Biochemistry; 2002 Nov; 41(44):13318-27. PubMed ID: 12403634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular permutation and deletion studies of myoglobin indicate that the correct position of its N-terminus is required for native stability and solubility but not for native-like heme binding and folding.
    Ribeiro EA; Ramos CH
    Biochemistry; 2005 Mar; 44(12):4699-709. PubMed ID: 15779896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin.
    Waltho JP; Feher VA; Merutka G; Dyson HJ; Wright PE
    Biochemistry; 1993 Jun; 32(25):6337-47. PubMed ID: 8518279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin.
    Shin HC; Merutka G; Waltho JP; Tennant LL; Dyson HJ; Wright PE
    Biochemistry; 1993 Jun; 32(25):6356-64. PubMed ID: 8518281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding.
    Colón W; Elöve GA; Wakem LP; Sherman F; Roder H
    Biochemistry; 1996 Apr; 35(17):5538-49. PubMed ID: 8611545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme.
    Whitaker TL; Berry MB; Ho EL; Hargrove MS; Phillips GN; Komiyama NH; Nagai K; Olson JS
    Biochemistry; 1995 Jul; 34(26):8221-6. PubMed ID: 7599114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position-dependent interactions between cysteine residues and the helix dipole.
    Miranda JJ
    Protein Sci; 2003 Jan; 12(1):73-81. PubMed ID: 12493830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance of a protein helix to multiple alanine and valine substitutions.
    Gregoret LM; Sauer RT
    Fold Des; 1998; 3(2):119-26. PubMed ID: 9565756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent accessibility, protein surfaces, and protein folding.
    Lesk AM; Chothia C
    Biophys J; 1980 Oct; 32(1):35-47. PubMed ID: 7248454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy.
    López-Llano J; Campos LA; Sancho J
    Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.