These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 835836)

  • 21. [Determination of trace arsenic using GFAAS with metal-coated graphite tube].
    Lin S; Chen S; Bi M
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Feb; 19(1):81-3. PubMed ID: 15818925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.
    Pavlík M; Pavlíková D; Staszková L; Neuberg M; Kaliszová R; Száková J; Tlustos P
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1309-13. PubMed ID: 20655589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of atomic absorption in analysis of the environment.
    Kahn HL
    Ann N Y Acad Sci; 1972 Jun; 199():145-61. PubMed ID: 4506501
    [No Abstract]   [Full Text] [Related]  

  • 24. Electrothermal atomization of arsenic, antimony and thallium using a graphite atomizer with refractory metal platforms.
    Detcheva A; Havezov I; Gentscheva G; Ivanova E
    Ann Chim; 2002; 92(5-6):595-9. PubMed ID: 12125464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry.
    López-García I; Briceño M; Hernández-Córdoba M
    Anal Chim Acta; 2011 Aug; 699(1):11-7. PubMed ID: 21704752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Teaching analytical atomic spectroscopy advances in an environmental chemistry class using a project-based laboratory approach: investigation of lead and arsenic distributions in a lead arsenate contaminated apple orchard.
    Amarasiriwardena D
    Anal Bioanal Chem; 2007 May; 388(2):307-14. PubMed ID: 17342538
    [No Abstract]   [Full Text] [Related]  

  • 27. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.
    Signes-Pastor AJ; Munera-Picazo S; Burló F; Cano-Lamadrid M; Carbonell-Barrachina AA
    Environ Monit Assess; 2015 Jun; 187(6):387. PubMed ID: 26022848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Determination of available as (III) and as (V) in soils by flow injection hydride generation atomic fluorescence spectrometry].
    Liu HD; Shi JB; Chi Q; Tang ZY; Jin ZX; Xiong CH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):862-4. PubMed ID: 12938453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The determination of arsenic(III) and total arsenic by atomic-absorption spectroscopy.
    Aggett J; Aspell AC
    Analyst; 1976 May; 101(1202):341-7. PubMed ID: 1275287
    [No Abstract]   [Full Text] [Related]  

  • 30. Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry.
    Hershey JW; Oostdyk TS; Keliher PN
    J Assoc Off Anal Chem; 1988; 71(6):1090-3. PubMed ID: 3240958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry.
    Bruhn CG; Huerta VN; Neira JY
    Anal Bioanal Chem; 2004 Jan; 378(2):447-55. PubMed ID: 14598009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry.
    Fiorino JA; Jones JW; Capar SG
    Anal Chem; 1976 Jan; 48(1):120-5. PubMed ID: 1244756
    [No Abstract]   [Full Text] [Related]  

  • 33. Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.
    Niemelä M; Perämäki P; Piispanen J
    Anal Bioanal Chem; 2003 Mar; 375(5):673-8. PubMed ID: 12638052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Typha capensis for the remediation of soil contaminated with As, Hg, Cd and Pb.
    Wiafe S; Buamah R; Essandoh H; Darkwah L
    Environ Monit Assess; 2019 May; 191(6):346. PubMed ID: 31055657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry.
    Mandiwana KL; Panichev N
    J Hazard Mater; 2010 Jun; 178(1-3):1106-8. PubMed ID: 20144504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection.
    Shuvaeva OV; Gustaytis MA; Anoshin GN
    Anal Chim Acta; 2008 Jul; 621(2):148-54. PubMed ID: 18573378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The problem of arsenic interference in the analysis of Cd to evaluate its extractability in soils contaminated by arsenic.
    Waterlot C; Douay F
    Talanta; 2009 Dec; 80(2):716-22. PubMed ID: 19836542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic and lead in an orchard environment.
    Aten CF; Bourke JB; Martini JH; Walton JC
    Bull Environ Contam Toxicol; 1980 Jan; 24(1):108-15. PubMed ID: 7357099
    [No Abstract]   [Full Text] [Related]  

  • 39. Determination of total arsenic in biological samples by arsine generation and atomic absorption spectrometry.
    Uthus EO; Collings ME; Cornatzer WE; Nielsen FH
    Anal Chem; 1981 Dec; 53(14):2221-4. PubMed ID: 7316211
    [No Abstract]   [Full Text] [Related]  

  • 40. Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in a community with long history of gold mining in Tanzania.
    Nyanza EC; Dewey D; Thomas DS; Davey M; Ngallaba SE
    Bull Environ Contam Toxicol; 2014 Dec; 93(6):716-21. PubMed ID: 24923470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.