These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 835836)

  • 41. An examination of instrumental systems for reducing the cycle time in atomic-absorption spectroscopy with electrothermal atomisation.
    Bahreyni-Toosi MH; Dawson JB; Ellis DJ; Duffield RJ
    Analyst; 1984 Dec; 109(12):1607-12. PubMed ID: 6532251
    [No Abstract]   [Full Text] [Related]  

  • 42. Precision and accuracy of ST-EDXRF performance for As determination comparing with ICP-MS and evaluation of As deviation in the soil media.
    Akbulut S; Cevik U; Van AA; De Wael K; Van Grieken R
    Chemosphere; 2014 Feb; 96():16-22. PubMed ID: 23953251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of arsenic in seafood by electrothermal atomic absorption spectrometry after microwave digestion: NMKL collaborative study.
    Julshamn K; Thorlacius A; Lea P
    J AOAC Int; 2000; 83(6):1423-8. PubMed ID: 11128147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer.
    Zhu Z; Liu J; Zhang S; Na X; Zhang X
    Anal Chim Acta; 2008 Jan; 607(2):136-41. PubMed ID: 18190801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of arsenic in chicken feed by hydride generation atomic absorption spectrometry after pre-concentration with polyurethane foam.
    Dos Passos AS; Néri TS; Maciel MV; da Silva Romão IL; Lemos VA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(11):1689-95. PubMed ID: 22845621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of selenium in blood and plant material by hydride generation and atomic-absorption spectroscopy.
    Clinton OE
    Analyst; 1977 Mar; 102(1212):187-92. PubMed ID: 855930
    [No Abstract]   [Full Text] [Related]  

  • 47. In Situ Dielectric Barrier Discharge Trap for Ultrasensitive Arsenic Determination by Atomic Fluorescence Spectrometry.
    Qi Y; Mao X; Liu J; Na X; Chen G; Liu M; Zheng C; Qian Y
    Anal Chem; 2018 May; 90(10):6332-6338. PubMed ID: 29688699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials.
    Fishman M; Spencer R
    Anal Chem; 1977 Sep; 49(11):1599-1602. PubMed ID: 900496
    [No Abstract]   [Full Text] [Related]  

  • 49. Determination of lead in drinking water by atomic-absorption spectrophotometry with electrothermal atomisation.
    Bertenshaw MP; Gelsthorpe D; Wheatstone KC
    Analyst; 1981 Jan; 106(1258):23-31. PubMed ID: 7469029
    [No Abstract]   [Full Text] [Related]  

  • 50. Arsenic in the forest environment after thinning with MSMA and cacodylic acid.
    Norris LA; Canutt PR; Neuman JF
    Bull Environ Contam Toxicol; 1983 Mar; 30(3):309-16. PubMed ID: 6860409
    [No Abstract]   [Full Text] [Related]  

  • 51. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrothermal atomic absorption spectroscopic determination of chromium in plant tissues.
    Cary EE; Rutzke M
    J Assoc Off Anal Chem; 1983 Jul; 66(4):850-2. PubMed ID: 6885689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fractionation and bioavailability of arsenic in agricultural soils: solvent extraction tests and their relevance in risk assessment.
    Cornejo-Ponce L; Acarapi-Cartes J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1247-58. PubMed ID: 21879857
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.
    Abdolmohammad-Zadeh H; Jouyban A; Amini R
    Talanta; 2013 Nov; 116():604-10. PubMed ID: 24148451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Direct determination of lead and cadmium in soil by slurry-sampling graphite furnace atomic absorption spectrometry using matrix modification technique].
    Sun HW; Wen XH; Liang SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):950-4. PubMed ID: 16883877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of carbon nanotubes and electrothermal atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters.
    López-García I; Rivas RE; Hernández-Córdoba M
    Talanta; 2011 Oct; 86():52-7. PubMed ID: 22063510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic distribution in soils and plants of an arsenic impacted former mining area.
    Otones V; Álvarez-Ayuso E; García-Sánchez A; Santa Regina I; Murciego A
    Environ Pollut; 2011 Oct; 159(10):2637-47. PubMed ID: 21700372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overcoming interference from the alumina matrix on the determination of arsenic at 189 nanometers using electrothermal atomic absorption spectrometry.
    Husáková L; Cernohorský T; Srámková J; Urbanová-Dolezalová I
    Anal Chim Acta; 2009 Feb; 634(1):22-6. PubMed ID: 19154805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of arsenic and mercury in sunflower oil by electrothermal atomic absorption.
    Karadjova I; Venelinov T
    Food Addit Contam; 2002 Oct; 19(10):948-53. PubMed ID: 12443556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.