These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8358771)

  • 1. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice.
    Gailly P; Boland B; Himpens B; Casteels R; Gillis JM
    Cell Calcium; 1993 Jun; 14(6):473-83. PubMed ID: 8358771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice.
    Head SI
    J Physiol; 1993 Sep; 469():11-9. PubMed ID: 8271194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane abnormalities and Ca homeostasis in muscles of the mdx mouse, an animal model of the Duchenne muscular dystrophy: a review.
    Gillis JM
    Acta Physiol Scand; 1996 Mar; 156(3):397-406. PubMed ID: 8729700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of dystrophin but normal calcium homeostasis in smooth muscle from dystrophic mdx mice.
    Boland B; Himpens B; Casteels R; Gillis JM
    J Muscle Res Cell Motil; 1993 Feb; 14(1):133-9. PubMed ID: 8478423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice.
    Bakker AJ; Head SI; Williams DA; Stephenson DG
    J Physiol; 1993 Jan; 460():1-13. PubMed ID: 8487190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle.
    Hopf FW; Turner PR; Denetclaw WF; Reddy P; Steinhardt RA
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1325-39. PubMed ID: 8897840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers.
    Tutdibi O; Brinkmeier H; Rüdel R; Föhr KJ
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):859-68. PubMed ID: 10066910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice.
    De Backer F; Vandebrouck C; Gailly P; Gillis JM
    J Physiol; 2002 Aug; 542(Pt 3):855-65. PubMed ID: 12154184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of calcium by normal and dystrophin-deficient mouse muscle during contractile activity in vitro.
    McArdle A; Edwards RH; Jackson MJ
    Clin Sci (Lond); 1992 Apr; 82(4):455-9. PubMed ID: 1315657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of contractile activity on muscle damage in the dystrophin-deficient mdx mouse.
    McArdle A; Edwards RH; Jackson MJ
    Clin Sci (Lond); 1991 Apr; 80(4):367-71. PubMed ID: 1851074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.
    Williams DA; Head SI; Lynch GS; Stephenson DG
    J Physiol; 1993 Jan; 460():51-67. PubMed ID: 8487206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting calcium concentrations in isolated skeletal muscle fibres of dystrophic mice.
    Williams DA; Head SI; Bakker AJ; Stephenson DG
    J Physiol; 1990 Sep; 428():243-56. PubMed ID: 2231412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres.
    Pressmar J; Brinkmeier H; Seewald MJ; Naumann T; Rüdel R
    Pflugers Arch; 1994 Apr; 426(6):499-505. PubMed ID: 8052519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice.
    Head SI; Williams DA; Stephenson DG
    Proc Biol Sci; 1992 May; 248(1322):163-9. PubMed ID: 1352891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle.
    Turner PR; Schultz R; Ganguly B; Steinhardt RA
    J Membr Biol; 1993 May; 133(3):243-51. PubMed ID: 8392585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice.
    Haws CM; Lansman JB
    Proc Biol Sci; 1991 Sep; 245(1314):173-7. PubMed ID: 1684042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress.
    Leijendekker WJ; Passaquin AC; Metzinger L; Rüegg UT
    Br J Pharmacol; 1996 Jun; 118(3):611-6. PubMed ID: 8762085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine activates two types of ion channels in sarcolemma from adult muscular dystrophic (mdx) mice.
    Költgen D; Franke C
    Neurosci Lett; 1992 Mar; 137(1):1-4. PubMed ID: 1320748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle.
    Tidball JG; Spencer MJ; St Pierre BA
    Exp Cell Res; 1992 Nov; 203(1):141-9. PubMed ID: 1426037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of calcium on protein turnover of incubated muscles from mdx mice.
    MacLennan PA; McArdle A; Edwards RH
    Am J Physiol; 1991 Apr; 260(4 Pt 1):E594-8. PubMed ID: 2018123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.