These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 8358791)
1. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. van Deursen J; Heerschap A; Oerlemans F; Ruitenbeek W; Jap P; ter Laak H; Wieringa B Cell; 1993 Aug; 74(4):621-31. PubMed ID: 8358791 [TBL] [Abstract][Full Text] [Related]
2. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. van Deursen J; Ruitenbeek W; Heerschap A; Jap P; ter Laak H; Wieringa B Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9091-5. PubMed ID: 8090775 [TBL] [Abstract][Full Text] [Related]
3. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614 [TBL] [Abstract][Full Text] [Related]
4. Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. van Deursen J; Jap P; Heerschap A; ter Laak H; Ruitenbeek W; Wieringa B Biochim Biophys Acta; 1994 May; 1185(3):327-35. PubMed ID: 8180237 [TBL] [Abstract][Full Text] [Related]
5. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Steeghs K; Benders A; Oerlemans F; de Haan A; Heerschap A; Ruitenbeek W; Jost C; van Deursen J; Perryman B; Pette D; Brückwilder M; Koudijs J; Jap P; Veerkamp J; Wieringa B Cell; 1997 Apr; 89(1):93-103. PubMed ID: 9094718 [TBL] [Abstract][Full Text] [Related]
6. From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle. Kaasik A; Veksler V; Boehm E; Novotova M; Ventura-Clapier R FASEB J; 2003 Apr; 17(6):708-10. PubMed ID: 12586739 [TBL] [Abstract][Full Text] [Related]
7. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions. Gorselink M; Drost MR; van der Vusse GJ Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654 [TBL] [Abstract][Full Text] [Related]
8. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
9. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020 [TBL] [Abstract][Full Text] [Related]
10. Approaching the multifaceted nature of energy metabolism: inactivation of the cytosolic creatine kinases via homologous recombination in mouse embryonic stem cells. van Deursen J; Wieringa B Mol Cell Biochem; 1994; 133-134():263-74. PubMed ID: 7808458 [TBL] [Abstract][Full Text] [Related]
11. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
12. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466 [TBL] [Abstract][Full Text] [Related]
13. Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice. Gorselink M; Drost MR; Coumans WA; van Kranenburg GP; Hesselink RP; van der Vusse GJ Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E619-25. PubMed ID: 11500318 [TBL] [Abstract][Full Text] [Related]
14. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions. Spriet LL Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938 [TBL] [Abstract][Full Text] [Related]
15. Absence of myofibrillar creatine kinase and diaphragm isometric function during repetitive activation. LaBella JJ; Daood MJ; Koretsky AP; Roman BB; Sieck GC; Wieringa B; Watchko JF J Appl Physiol (1985); 1998 Apr; 84(4):1166-73. PubMed ID: 9516180 [TBL] [Abstract][Full Text] [Related]
16. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase. Kan HE; Veltien A; Arnts H; Nabuurs CI; Luijten B; de Haan A; Wieringa B; Heerschap A NMR Biomed; 2009 Jun; 22(5):523-31. PubMed ID: 19156695 [TBL] [Abstract][Full Text] [Related]
17. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413 [TBL] [Abstract][Full Text] [Related]
18. Compartmentation of high-energy phosphates in resting and working rat skeletal muscle. Hebisch S; Soboll S; Schwenen M; Sies H Biochim Biophys Acta; 1984 Feb; 764(2):117-24. PubMed ID: 6696884 [TBL] [Abstract][Full Text] [Related]
19. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. Veksler VI; Kuznetsov AV; Anflous K; Mateo P; van Deursen J; Wieringa B; Ventura-Clapier R J Biol Chem; 1995 Aug; 270(34):19921-9. PubMed ID: 7650007 [TBL] [Abstract][Full Text] [Related]
20. Energy metabolism during damaging contractile activity in isolated skeletal muscle: a 31P-NMR study. West-Jordan JA; Martin PA; Abraham RJ; Edwards RH; Jackson MJ Clin Chim Acta; 1991 Dec; 203(2-3):119-34. PubMed ID: 1777976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]