BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8359226)

  • 1. Erythropoietin as a mitogen for fetal liver stromal cells which support erythropoiesis.
    Ohneda O; Yanai N; Obinata M
    Exp Cell Res; 1993 Sep; 208(1):327-31. PubMed ID: 8359226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the blood island during normal and 5-fluorouracil-perturbed hemopoiesis.
    Vogt C; NoƩ G; Rich IN
    Blood Cells; 1991; 17(1):105-21; discussion 121-5. PubMed ID: 2018848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sensitivity of in vitro erythropoietic progenitor cells to different erythropoietin reagents during development and the role of cell death in culture.
    Zimmermann F; Rich IN
    Exp Hematol; 1996 Feb; 24(2):330-9. PubMed ID: 8641362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet derived growth factor receptor alpha is essential for establishing a microenvironment that supports definitive erythropoiesis.
    Li WL; Yamada Y; Ueno M; Nishikawa S; Nishikawa S; Takakura N
    J Biochem; 2006 Aug; 140(2):267-73. PubMed ID: 16845124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine fetal-liver stromal cells support erythroid colony formation: enhancement by insulin-like growth factor II.
    Li Q; Congote LF
    Exp Hematol; 1995 Jan; 23(1):66-73. PubMed ID: 7527785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen.
    Otani T; Nakamura S; Inoue T; Ijiri Y; Tsuji-Takayama K; Motoda R; Orita K
    Exp Hematol; 2004 Jul; 32(7):607-13. PubMed ID: 15246156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of c-Kit and erythropoietin receptor in erythropoiesis.
    Munugalavadla V; Kapur R
    Crit Rev Oncol Hematol; 2005 Apr; 54(1):63-75. PubMed ID: 15780908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual erythroid progenitors in W/W mice respond to erythropoietin in the absence of steel factor signals.
    Pharr PN; Hofbauer A; Worthington RE; Longmore GD
    Int J Hematol; 2000 Aug; 72(2):178-85. PubMed ID: 11039666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro.
    Srivastava AS; Kaushal S; Mishra R; Lane TA; Carrier E
    Biochem Biophys Res Commun; 2006 Jul; 346(2):508-16. PubMed ID: 16764825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chronic renal failure on the expression of erythropoietin message in a murine model.
    Zhang F; Laneuville P; Gagnon RF; Morin B; Brox AG
    Exp Hematol; 1996 Nov; 24(13):1469-74. PubMed ID: 8950229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental stage-specific expression of the alpha and beta subunits of the HIF-1 protein in the mouse and human fetus.
    Madan A; Varma S; Cohen HJ
    Mol Genet Metab; 2002 Mar; 75(3):244-9. PubMed ID: 11914036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new type-II membrane protein in erythropoietic organs enhances erythropoiesis.
    Yanai N; Sato Y; Obinata M
    Leukemia; 1997 Apr; 11 Suppl 3():484-5. PubMed ID: 9209433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis.
    Suzuki N; Hirano I; Pan X; Minegishi N; Yamamoto M
    Nat Commun; 2013; 4():2902. PubMed ID: 24309470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutralization of autocrine transforming growth factor-beta in human cord blood CD34(+)CD38(-)Lin(-) cells promotes stem-cell-factor-mediated erythropoietin-independent early erythroid progenitor development and reduces terminal differentiation.
    Akel S; Petrow-Sadowski C; Laughlin MJ; Ruscetti FW
    Stem Cells; 2003; 21(5):557-67. PubMed ID: 12968110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal erythroid cell production during erythropoietin treatment of mice occurs by exploiting the splenic microenvironment.
    Nijhof W; Goris H; Dontje B; Dresz J; Loeffler M
    Exp Hematol; 1993 Apr; 21(4):496-501. PubMed ID: 8462658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow.
    Muench MO; Namikawa R
    Blood Cells Mol Dis; 2001; 27(2):377-90. PubMed ID: 11259159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and inhibition of the erythropoietin receptor by a membrane-anchored erythropoietin.
    Negre O; Fusil F; Henri A; Villette JM; Leboulch P; Beuzard Y; Payen E
    Exp Hematol; 2008 Apr; 36(4):412-23. PubMed ID: 18295963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant N-acetyl-L-cysteine inhibits erythropoietin-induced differentiation of erythroid progenitors derived from mouse fetal liver.
    Nagata M; Arimitsu N; Ito T; Sekimizu K
    Cell Biol Int; 2007 Mar; 31(3):252-6. PubMed ID: 17174578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxymetholone and erythropoiesis: failure to detect an effect in fetal mouse liver cell cultures.
    Dunn CD; Napier JA; Ford TW; Price VA
    Exp Hematol; 1977 Nov; 5(6):546-50. PubMed ID: 590407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythropoietin in mouse avascular yolk sacs is increased by retinoic acid.
    Yasuda Y; Okano M; Nagao M; Masuda S; Konishi H; Ueda K; Matsuo T; Tsujiguchi K; Tajima S; Sasaki R; Tanimura T
    Dev Dyn; 1996 Oct; 207(2):184-94. PubMed ID: 8906421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.