These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8359457)

  • 1. Degradation of human and rat surfactant apoprotein by neutrophil elastase and cathepsin G.
    Lewis RW; Harwood JL; Tetley TD; Harris E; Richards RJ
    Biochem Soc Trans; 1993 May; 21(2):206S. PubMed ID: 8359457
    [No Abstract]   [Full Text] [Related]  

  • 2. Neutrophil lysosomal dysfunctions in mutant C57 Bl/6J mice: interstrain variations in content of lysosomal elastase, cathepsin G and their inhibitors.
    Gardi C; Cavarra E; Calzoni P; Marcolongo P; de Santi M; Martorana PA; Lungarella G
    Biochem J; 1994 Apr; 299 ( Pt 1)(Pt 1):237-45. PubMed ID: 8166647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 ('gelatinase') by human neutrophil elastase and cathepsin G.
    Okada Y; Nakanishi I
    FEBS Lett; 1989 Jun; 249(2):353-6. PubMed ID: 2544455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the human leukocyte proteinases elastase and cathepsin G by various surfactants.
    Wenzel HR; Feldmann A; Engelbrecht S; Tschesche H
    Biol Chem Hoppe Seyler; 1990 Aug; 371(8):721-4. PubMed ID: 2206460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro activation of pro-cathepsin B by three serine proteinases: leucocyte elastase, cathepsin G, and the urokinase-type plasminogen activator.
    Dalet-Fumeron V; Guinec N; Pagano M
    FEBS Lett; 1993 Oct; 332(3):251-4. PubMed ID: 8405467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase.
    Pison U; Tam EK; Caughey GH; Hawgood S
    Biochim Biophys Acta; 1989 Sep; 992(3):251-7. PubMed ID: 2775786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing and intracellular transport of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937-modulation by brefeldin A, ammonium chloride, and monensin.
    Lindmark A; Gullberg U; Olsson I
    J Leukoc Biol; 1994 Jan; 55(1):50-7. PubMed ID: 8283140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of human polymorphonuclear leukocyte elastase upon surfactant proteins in vitro.
    Liau DF; Yin NX; Huang J; Ryan SF
    Biochim Biophys Acta; 1996 Jul; 1302(2):117-28. PubMed ID: 8695661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibition of elastin hydrolysis, catalyzed by human leukocyte elastase and cathepsin G, by the Bowman-Birk type soy inhibitor].
    Tikhonova TV; Gladysheva IP; Kazanskaia NF; Larionova NI
    Biokhimiia; 1994 Nov; 59(11):1739-45. PubMed ID: 7873681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage of neutrophil serine proteases and decreased surfactant protein-A (SP-A) levels in inflammatory lung disease.
    Rubio F; Cooley J; Accurso FJ; Remold-O'Donnell E
    Thorax; 2004 Apr; 59(4):318-23. PubMed ID: 15047952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Column separation using Bio-Gel P100 for the characterization of the products of human lung elastin degradation by leucocyte elastase and cathepsin G.
    Smyrlaki M; Davril M; Hayem A
    Biomed Chromatogr; 1986 Feb; 1(1):27-30. PubMed ID: 3506815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An effective single-stage method of obtaining elastase and cathepsin G from human leukocytes].
    Neshkova EA; Dotsenko VL; Larionova NI; Iarovaia GA
    Biokhimiia; 1993 Dec; 58(12):1886-92. PubMed ID: 8292650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis and processing of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937.
    Lindmark A; Persson AM; Olsson I
    Blood; 1990 Dec; 76(11):2374-80. PubMed ID: 2124153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo effects of neutrophil enzymes on cardiac enzymes.
    Delanghe JR; De Buyzere ML
    Clin Chem; 1994 Jan; 40(1):163-4. PubMed ID: 8287531
    [No Abstract]   [Full Text] [Related]  

  • 15. Neutrophil proteases in plasminogen activation.
    Machovich R; Himer A; Owen WG
    Blood Coagul Fibrinolysis; 1990 Aug; 1(3):273-7. PubMed ID: 1715763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release and degradation of angiotensin I and angiotensin II from angiotensinogen by neutrophil serine proteinases.
    Ramaha A; Patston PA
    Arch Biochem Biophys; 2002 Jan; 397(1):77-83. PubMed ID: 11747312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl-terminal prodomain-deleted human leukocyte elastase and cathepsin G are efficiently targeted to granules and enzymatically activated in the rat basophilic/mast cell line RBL.
    Gullberg U; Lindmark A; Lindgren G; Persson AM; Nilsson E; Olsson I
    J Biol Chem; 1995 May; 270(21):12912-8. PubMed ID: 7539007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases.
    Salvesen G; Enghild JJ
    Biomed Biochim Acta; 1991; 50(4-6):665-71. PubMed ID: 1801740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarities between human and rat leukocyte elastase and cathepsin G.
    Virca GD; Metz G; Schnebli HP
    Eur J Biochem; 1984 Oct; 144(1):1-9. PubMed ID: 6566611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of tenascin to degradation by matrix metalloproteinases and serine proteinases.
    Imai K; Kusakabe M; Sakakura T; Nakanishi I; Okada Y
    FEBS Lett; 1994 Sep; 352(2):216-8. PubMed ID: 7523186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.