BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8359528)

  • 1. Structural relationships between glyoxalase I and membrane transport proteins.
    McKie JH; Douglas KT
    Biochem Soc Trans; 1993 May; 21(2):540-4. PubMed ID: 8359528
    [No Abstract]   [Full Text] [Related]  

  • 2. The primary structure of monomeric yeast glyoxalase I indicates a gene duplication resulting in two similar segments homologous with the subunit of dimeric human glyoxalase I.
    Ridderström M; Mannervik B
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):1005-6. PubMed ID: 8670139
    [No Abstract]   [Full Text] [Related]  

  • 3. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion.
    Iozef R; Rahlfs S; Chang T; Schirmer H; Becker K
    FEBS Lett; 2003 Nov; 554(3):284-8. PubMed ID: 14623080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the novel monomeric glyoxalase I from Zea mays.
    Turra GL; Agostini RB; Fauguel CM; Presello DA; Andreo CS; González JM; Campos-Bermudez VA
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2009-20. PubMed ID: 26457425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of human colon glyoxalase-I.
    Ranganathan S; Walsh ES; Godwin AK; Tew KD
    J Biol Chem; 1993 Mar; 268(8):5661-7. PubMed ID: 8449929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial glyoxalase I enzymes: structural and biochemical investigations.
    Honek JF
    Biochem Soc Trans; 2014 Apr; 42(2):479-84. PubMed ID: 24646264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA.
    Hossain MA; Fujita M
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2007-13. PubMed ID: 19734676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homologies and family relationships among Na+/Cl- neurotransmitter transporters.
    Lill H; Nelson N
    Methods Enzymol; 1998; 296():425-36. PubMed ID: 9779464
    [No Abstract]   [Full Text] [Related]  

  • 9. Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes.
    Sukdeo N; Honek JF
    Biochim Biophys Acta; 2007 Jun; 1774(6):756-63. PubMed ID: 17513180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
    Cameron AD; Olin B; Ridderström M; Mannervik B; Jones TA
    EMBO J; 1997 Jun; 16(12):3386-95. PubMed ID: 9218781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and molecular properties of glyoxalase I.
    Mannervik B; Ridderström M
    Biochem Soc Trans; 1993 May; 21(2):515-7. PubMed ID: 8359522
    [No Abstract]   [Full Text] [Related]  

  • 12. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family.
    Chirgadze YN; Boshkova EA; Battaile KP; Mendes VG; Lam R; Chan TSY; Romanov V; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2018 Feb; 36(2):376-386. PubMed ID: 28034013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of glyoxalase I from soybean.
    Skipsey M; Andrews CJ; Townson JK; Jepson I; Edwards R
    Arch Biochem Biophys; 2000 Feb; 374(2):261-8. PubMed ID: 10666306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane transport proteins: implications of sequence comparisons.
    Griffith JK; Baker ME; Rouch DA; Page MG; Skurray RA; Paulsen IT; Chater KF; Baldwin SA; Henderson PJ
    Curr Opin Cell Biol; 1992 Aug; 4(4):684-95. PubMed ID: 1419050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational and experimental exploration of the structure-activity relationships of flavonoids as potent glyoxalase-I inhibitors.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; El-Elimat T; Almaaytah AM
    Drug Dev Res; 2018 Mar; 79(2):58-69. PubMed ID: 29285772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms.
    Clugston SL; Honek JF
    J Mol Evol; 2000 May; 50(5):491-5. PubMed ID: 10824093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2.
    Chomiki N; Voss JC; Warden CH
    Eur J Biochem; 2001 Feb; 268(4):903-13. PubMed ID: 11179956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive effect of GAC gene product on the mRNA level of glyoxalase I gene in Saccharomyces cerevisiae.
    Inoue Y; Yano H; Ginya H; Tsuchiyama H; Murata K; Kimura A
    Biotechnol Appl Biochem; 1991 Dec; 14(3):391-4. PubMed ID: 1777125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response.
    Ghosh A; Islam T
    BMC Plant Biol; 2016 Apr; 16():87. PubMed ID: 27083416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity.
    Das S; Roy Chowdhury S; Dey S; Sen U
    PLoS One; 2017; 12(2):e0172629. PubMed ID: 28235098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.