These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8359681)

  • 41. Inhibition of yeast exoglucanases by glucosidase inhibitors.
    Ridruejo JC; Muñoz MD; Andaluz E; Larriba G
    Biochim Biophys Acta; 1989 Dec; 993(2-3):179-85. PubMed ID: 2532041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallization of the exo(1,3)-beta-glucanase from Candida albicans.
    Cutfield S; Brooke G; Sullivan P; Cutfield J
    J Mol Biol; 1992 May; 225(1):217-8. PubMed ID: 1583691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.
    Geber A; Williamson PR; Rex JH; Sweeney EC; Bennett JE
    J Bacteriol; 1992 Nov; 174(21):6992-6. PubMed ID: 1400249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis.
    Butler DK; All O; Goffena J; Loveless T; Wilson T; Toenjes KA
    Fungal Genet Biol; 2006 Aug; 43(8):573-82. PubMed ID: 16730201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene.
    Hoover CI; Jantapour MJ; Newport G; Agabian N; Fisher SJ
    FEMS Microbiol Lett; 1998 Oct; 167(2):163-9. PubMed ID: 9809417
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic.
    Chang HT; Tsai PW; Huang HH; Liu YS; Chien TS; Lan CY
    Biochem J; 2012 Feb; 441(3):963-70. PubMed ID: 22023339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans.
    Calera JA; Calderone R
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1431-1442. PubMed ID: 10411270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for the presence of pir-like proteins in Candida albicans.
    Kandasamy R; Vediyappan G; Chaffin WL
    FEMS Microbiol Lett; 2000 May; 186(2):239-43. PubMed ID: 10802178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the role of cell-wall β-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37.
    Tsai PW; Yang CY; Chang HT; Lan CY
    PLoS One; 2011; 6(6):e21394. PubMed ID: 21713010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of Candida albicans transformation in response to changes of pH.
    Konno N; Ishii M; Nagai A; Watanabe T; Ogasawara A; Mikami T; Matsumoto T
    Biol Pharm Bull; 2006 May; 29(5):923-6. PubMed ID: 16651720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An electrophoretic karyotype for Candida albicans reveals large chromosomes in multiples.
    Lott TJ; Boiron P; Reiss E
    Mol Gen Genet; 1987 Aug; 209(1):170-4. PubMed ID: 3312954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide sequence of Candida pelliculosa beta-glucosidase gene.
    Kohchi C; Toh-e A
    Nucleic Acids Res; 1985 Sep; 13(17):6273-82. PubMed ID: 2995925
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans.
    Bockmühl DP; Krishnamurthy S; Gerads M; Sonneborn A; Ernst JF
    Mol Microbiol; 2001 Dec; 42(5):1243-57. PubMed ID: 11886556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic organization and mRNA expression of enolase genes of Candida albicans.
    Postlethwait P; Sundstrom P
    J Bacteriol; 1995 Apr; 177(7):1772-9. PubMed ID: 7896700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The high copper tolerance of Candida albicans is mediated by a P-type ATPase.
    Weissman Z; Berdicevsky I; Cavari BZ; Kornitzer D
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3520-5. PubMed ID: 10737803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly efficient homologous integration via tandem exo-beta-1, 3-glucanase genes in the common mushroom, Agaricus bisporus.
    van de Rhee MD; Mendes O; Werten MW; Huizing HJ; Mooibroek H
    Curr Genet; 1996 Jul; 30(2):166-73. PubMed ID: 8660463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae.
    Kuranda MJ; Robbins PW
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2585-9. PubMed ID: 3033651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Candida albicans HEX1 gene, a reporter of gene expression in Saccharomyces cerevisiae.
    Niimi K; Shepherd MG; Cannon RD
    Arch Microbiol; 1998 Aug; 170(2):113-9. PubMed ID: 9683648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular probe for typing strains of Candida albicans.
    Postlethwait P; Bell B; Oberle WT; Sundstrom P
    J Clin Microbiol; 1996 Feb; 34(2):474-6. PubMed ID: 8789044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.