BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8360021)

  • 1. Retinal vessel circulation patterns visualized from a sequence of computer-aligned angiograms.
    Jagoe R; Arnold J; Blauth C; Smith PL; Taylor KM; Wootton R
    Invest Ophthalmol Vis Sci; 1993 Sep; 34(10):2881-7. PubMed ID: 8360021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing retinal fundus photomontages. A new computer-based method.
    Mahurkar AA; Vivino MA; Trus BL; Kuehl EM; Datiles MB; Kaiser-Kupfer MI
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1675-83. PubMed ID: 8675411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of arteriovenous crossing sheathotomy for branch retinal vein occlusion by fluorescein videoangiography and image analysis.
    Yamaji H; Shiraga F; Tsuchida Y; Yamamoto Y; Ohtsuki H
    Am J Ophthalmol; 2004 May; 137(5):834-41. PubMed ID: 15126147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of leukocyte dynamics in retinal microcirculation.
    Nishiwaki H; Ogura Y; Kimura H; Kiryu J; Honda Y
    Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):123-30. PubMed ID: 7822139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes.
    Miyamoto K; Ogura Y; Nishiwaki H; Matsuda N; Honda Y; Kato S; Ishida H; Seino Y
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):898-905. PubMed ID: 8603874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundus photographic, fluorescein angiographic, and indocyanine green angiographic signs in successful laser chorioretinal venous anastomosis for central retinal vein occlusion.
    Browning DJ
    Ophthalmology; 1999 Dec; 106(12):2261-8. PubMed ID: 10599655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of radial optic neurotomy for central retinal vein occlusion by indocyanine green videoangiography and image analysis.
    Nomoto H; Shiraga F; Yamaji H; Kageyama M; Takenaka H; Baba T; Tsuchida Y
    Am J Ophthalmol; 2004 Oct; 138(4):612-9. PubMed ID: 15488789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved leukocyte tracking in mouse retinal and choroidal circulation.
    Xu H; Manivannan A; Goatman KA; Liversidge J; Sharp PF; Forrester JV; Crane IJ
    Exp Eye Res; 2002 Mar; 74(3):403-10. PubMed ID: 12014921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker.
    Kiryu J; Asrani S; Shahidi M; Mori M; Zeimer R
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1240-6. PubMed ID: 7775101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescein angiographic study of branch retinal artery occlusion (BRAO) - the retrograde filling of occluded vessels.
    Schmidt D
    Eur J Med Res; 1999 Dec; 4(12):491-506. PubMed ID: 10611053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vivo effect of endothelins on retinal circulation in nondiabetic and diabetic rats.
    Bursell SE; Clermont AC; Oren B; King GL
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):596-607. PubMed ID: 7890491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved interpretation of flow maps obtained by scanning laser Doppler flowmetry using a rat model of retinal artery occlusion.
    Yu DY; Townsend R; Cringle SJ; Chauhan BC; Morgan WH
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):166-74. PubMed ID: 15623770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative circulatory measurements in branch retinal vessel occlusion.
    Fujio N; Feke GT; Ogasawara H; Goger DG; Yoshida A; McMeel JW
    Eye (Lond); 1994; 8 ( Pt 3)():324-8. PubMed ID: 7958039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical investigation of the combination of a scanning laser ophthalmoscope and laser Doppler flowmeter.
    Michelson G; Langhans MJ; Groh MJ
    Ger J Ophthalmol; 1995 Nov; 4(6):342-9. PubMed ID: 8751099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms.
    Flower RW
    Invest Ophthalmol Vis Sci; 1993 Aug; 34(9):2720-9. PubMed ID: 8344794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted, interactive fundus image processing for macular drusen quantitation.
    Shin DS; Javornik NB; Berger JW
    Ophthalmology; 1999 Jun; 106(6):1119-25. PubMed ID: 10366080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of retinal blood vessel width using computerized image analysis.
    Eaton AM; Hatchell DL
    Invest Ophthalmol Vis Sci; 1988 Aug; 29(8):1258-64. PubMed ID: 3417411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fluorescence angiography image of erythrocytes with the scanning laser ophthalmoscope].
    Nasemann JE
    Fortschr Ophthalmol; 1991; 88(2):138-41. PubMed ID: 1855731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorangiographic study of the ocular fundus in normal horses.
    Molleda JM; Cervantes I; Galán A; Tardón R; Gallardo JM; Martín-Suárez EM
    Vet Ophthalmol; 2008 Sep; 11 Suppl 1():2-7. PubMed ID: 19046263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope.
    Garcia CR; Rivero ME; Bartsch DU; Ishiko S; Takamiya A; Fukui K; Hirokawa H; Clark T; Yoshida A; Freeman WR
    Ophthalmology; 1999 Jun; 106(6):1114-8. PubMed ID: 10366079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.