BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 8360156)

  • 21. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals.
    Gaudu P; Touati D; Nivière V; Fontecave M
    J Biol Chem; 1994 Mar; 269(11):8182-8. PubMed ID: 8132544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis.
    Zenno S; Saigo K
    J Bacteriol; 1994 Jun; 176(12):3544-51. PubMed ID: 8206831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides.
    Nivière V; Fieschi F; Dećout JL; Fontecave M
    J Biol Chem; 1999 Jun; 274(26):18252-60. PubMed ID: 10373427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.
    Louie TM; Yang H; Karnchanaphanurach P; Xie XS; Xun L
    J Biol Chem; 2002 Oct; 277(42):39450-5. PubMed ID: 12177066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of class III ribonucleotide reductase by flavodoxin: a protein radical-driven electron transfer to the iron-sulfur center.
    Mulliez E; Padovani D; Atta M; Alcouffe C; Fontecave M
    Biochemistry; 2001 Mar; 40(12):3730-6. PubMed ID: 11297442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.
    Lei B; Liu M; Huang S; Tu SC
    J Bacteriol; 1994 Jun; 176(12):3552-8. PubMed ID: 8206832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The NADPH: sulfite reductase of Escherichia coli is a paraquat reductase.
    Gaudu P; Fontecave M
    Eur J Biochem; 1994 Dec; 226(2):459-63. PubMed ID: 8001563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCC 7744, is a flavoprotein.
    Inouye S
    FEBS Lett; 1994 Jun; 347(2-3):163-8. PubMed ID: 8033996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri.
    Zenno S; Koike H; Tanokura M; Saigo K
    J Biochem; 1996 Oct; 120(4):736-44. PubMed ID: 8947835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase.
    Barlow T; Eliasson R; Platz A; Reichard P; Sjöberg BM
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1492-5. PubMed ID: 6300856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ferric reductases in Escherichia coli: the contribution of the haemoglobin-like protein.
    Eschenbrenner M; Coves J; Fontecave M
    Biochem Biophys Res Commun; 1994 Jan; 198(1):127-31. PubMed ID: 8292013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics.
    Kobayashi K; Yoshimoto A
    Biochim Biophys Acta; 1982 Aug; 705(3):348-56. PubMed ID: 6751400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dihydropteridine reductase from Escherichia coli.
    Vasudevan SG; Shaw DC; Armarego WL
    Biochem J; 1988 Oct; 255(2):581-8. PubMed ID: 3060113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tyrosyl free radical in ribonucleotide reductase.
    Gräslund A; Sahlin M; Sjöberg BM
    Environ Health Perspect; 1985 Dec; 64():139-49. PubMed ID: 3007085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding.
    Wang H; Lei B; Tu SC
    Biochemistry; 2000 Jul; 39(26):7813-9. PubMed ID: 10869187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. V. Studies with the Escherichia coli hemoflavoprotein depleted of flavin mononucleotide: distinct roles for the flavin adenine dinucleotide and flavin mononucleotide prosthetic groups in catalysis.
    Faeder EJ; Davis PS; Siegel LM
    J Biol Chem; 1974 Mar; 249(5):1599-609. PubMed ID: 4150392
    [No Abstract]   [Full Text] [Related]  

  • 40. Cloning and characterization of a novel human dual flavin reductase.
    Paine MJ; Garner AP; Powell D; Sibbald J; Sales M; Pratt N; Smith T; Tew DG; Wolf CR
    J Biol Chem; 2000 Jan; 275(2):1471-8. PubMed ID: 10625700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.