These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8360690)

  • 1. Nonenzymatic conversion of 3,4-dihydroxyphenylalanine to 2,4,5-trihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine quinone in physiological solutions.
    Newcomer TA; Palmer AM; Rosenberg PA; Aizenman E
    J Neurochem; 1993 Sep; 61(3):911-20. PubMed ID: 8360690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurochem; 1995 Apr; 64(4):1742-8. PubMed ID: 7891103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOPA quinone, a kainate-like agonist and excitotoxin is generated by a catecholaminergic cell line.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurosci; 1995 Apr; 15(4):3172-7. PubMed ID: 7722654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione prevents 2,4,5-trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form.
    Aizenman E; Boeckman FA; Rosenberg PA
    Neurosci Lett; 1992 Sep; 144(1-2):233-6. PubMed ID: 1436708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,4,5-trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin.
    Rosenberg PA; Loring R; Xie Y; Zaleskas V; Aizenman E
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4865-9. PubMed ID: 1675790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of topa quinone cofactor.
    Kano K; Mori T; Uno B; Goto M; Ikeda T
    Biochim Biophys Acta; 1993 Jul; 1157(3):324-31. PubMed ID: 8391846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue.
    Matsuzaki R; Fukui T; Sato H; Ozaki Y; Tanizawa K
    FEBS Lett; 1994 Sep; 351(3):360-4. PubMed ID: 8082796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hydroxyl radical attack on dopa, dopamine, 6-hydroxydopa, and 6-hydroxydopamine.
    Nappi AJ; Vass E; Prota G; Memoli S
    Pigment Cell Res; 1995 Dec; 8(6):283-93. PubMed ID: 8789736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The other Topa: formation of 3,4,5-trihydroxyphenylalanine in peptides.
    Burzio LA; Waite JH
    Anal Biochem; 2002 Jul; 306(1):108-14. PubMed ID: 12069421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of 2,4,5-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GM1: implications for Parkinson's disease.
    Skaper SD; Facci L; Schiavo N; Vantini G; Moroni F; Dal Toso R; Leon A
    J Pharmacol Exp Ther; 1992 Dec; 263(3):1440-6. PubMed ID: 1361575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of 2,4,5-trihydroxyphenylalanine quinone (topa quinone) from copper amine oxidases.
    Janes SM; Klinman JP
    Methods Enzymol; 1995; 258():20-34. PubMed ID: 8524151
    [No Abstract]   [Full Text] [Related]  

  • 12. Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor.
    Choi YH; Matsuzaki R; Fukui T; Shimizu E; Yorifuji T; Sato H; Ozaki Y; Tanizawa K
    J Biol Chem; 1995 Mar; 270(9):4712-20. PubMed ID: 7876243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic oxidation of 2,4,5-trihydroxyphenylalanine by tyrosinase: identification and evolution of intermediates.
    Rodríguez-López JN; Bañón-Arnao M; Martinez-Ortiz F; Tudela J; Acosta M; Varón R; García-Cánovas F
    Biochim Biophys Acta; 1992 Nov; 1160(2):221-8. PubMed ID: 1445949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases.
    Mu D; Janes SM; Smith AJ; Brown DE; Dooley DM; Klinman JP
    J Biol Chem; 1992 Apr; 267(12):7979-82. PubMed ID: 1569055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the mechanism of the topa quinone generation in bacterial monoamine oxidase.
    Matsuzaki R; Suzuki S; Yamaguchi K; Fukui T; Tanizawa K
    Biochemistry; 1995 Apr; 34(14):4524-30. PubMed ID: 7718554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 3,4-di- and 3,4,5-trihydroxyphenylalanine-containing polypeptides from the blood cells of the ascidians Ascidia ceratodes and Molgula manhattensis.
    Taylor SW; Ross MM; Waite JH
    Arch Biochem Biophys; 1995 Dec; 324(2):228-40. PubMed ID: 8554314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of metal on 2,4,5-trihydroxyphenylalanine (topa) quinone biogenesis in the Hansenula polymorpha copper amine oxidase.
    Cai D; Williams NK; Klinman JP
    J Biol Chem; 1997 Aug; 272(31):19277-81. PubMed ID: 9235922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha,beta-Dehydro-3,4-dihydroxyphenylalanine derivatives: rate and mechanism of formation.
    Rzepecki LM; Waite JH
    Arch Biochem Biophys; 1991 Feb; 285(1):27-36. PubMed ID: 1899328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for copper and 3,4,6-trihydroxyphenylalanine quinone cofactors in an amine oxidase from the gram-negative bacterium Escherichia coli K-12.
    Cooper RA; Knowles PF; Brown DE; McGuirl MA; Dooley DM
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):337-40. PubMed ID: 1334402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometry of the topa quinone biogenesis reaction in copper amine oxidases.
    Ruggiero CE; Dooley DM
    Biochemistry; 1999 Mar; 38(10):2892-8. PubMed ID: 10074341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.