These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8360838)

  • 1. Polylactide-polyglycolide delivery system for physostigmine.
    Hussain MA; Mollica JA
    J Pharm Sci; 1993 May; 82(5):553-4. PubMed ID: 8360838
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins.
    Eliaz RE; Kost J
    J Biomed Mater Res; 2000 Jun; 50(3):388-96. PubMed ID: 10737881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polylactide-polyglycolide antibiotic implants.
    Garvin K; Feschuk C
    Clin Orthop Relat Res; 2005 Aug; (437):105-10. PubMed ID: 16056034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and production of single-immunization vaccines using polylactide polyglycolide microsphere systems.
    Cleland JL
    Pharm Biotechnol; 1995; 6():439-62. PubMed ID: 7551230
    [No Abstract]   [Full Text] [Related]  

  • 5. Commentary on Tiainen J, Soini Y, Tormala P, Waris T, Ashammakhi N. Self-reinforced polylactide/polyglycolide 80/20 screws take more than 1.5 years to resorb in rabbit cranial bone.
    Suuronen R
    J Craniofac Surg; 2005 Mar; 16(2):339. PubMed ID: 15750439
    [No Abstract]   [Full Text] [Related]  

  • 6. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering.
    Cao Y; Croll TI; Cooper-White JJ; O'Connor AJ; Stevens GW
    Methods Mol Biol; 2004; 238():87-112. PubMed ID: 14970441
    [No Abstract]   [Full Text] [Related]  

  • 7. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections.
    Benoit MA; Mousset B; Delloye C; Bouillet R; Gillard J
    Int Orthop; 1997; 21(6):403-8. PubMed ID: 9498152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers.
    Martin C; Winet H; Bao JY
    Biomaterials; 1996 Dec; 17(24):2373-80. PubMed ID: 8982478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying.
    Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J
    Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scleral plug of biodegradable polymers for controlled drug release in the vitreous.
    Hashizoe M; Ogura Y; Kimura H; Moritera T; Honda Y; Kyo M; Hyon SH; Ikada Y
    Arch Ophthalmol; 1994 Oct; 112(10):1380-4. PubMed ID: 7945044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A specialist's view of the new technology: the absorbable plating system.
    Habal MB
    J Craniofac Surg; 1997 Mar; 8(2):83. PubMed ID: 10332270
    [No Abstract]   [Full Text] [Related]  

  • 13. Incorporation of polylactide-polyglycolide in a cortical defect: neoangiogenesis and blood supply in a bone chamber.
    Winet H; Hollinger JO; Stevanovic M
    J Orthop Res; 1995 Sep; 13(5):679-89. PubMed ID: 7472746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer.
    Heckman JD; Ehler W; Brooks BP; Aufdemorte TB; Lohmann CH; Morgan T; Boyan BD
    J Bone Joint Surg Am; 1999 Dec; 81(12):1717-29. PubMed ID: 10608383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical characterization of photopolymerizable PLGA blends.
    Baroli B
    Adv Exp Med Biol; 2006; 585():183-96. PubMed ID: 17120785
    [No Abstract]   [Full Text] [Related]  

  • 16. Ectopic induction of cartilage and bone by bovine bone morphogenetic protein using a biodegradable polymeric reservoir.
    Yamazaki Y; Oida S; Ishihara K; Nakabayashi N
    J Biomed Mater Res; 1996 Jan; 30(1):1-4. PubMed ID: 8788099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of bone discontinuities in dogs using a biodegradable implant.
    Hollinger JO; Schmitz JP
    J Oral Maxillofac Surg; 1987 Jul; 45(7):594-600. PubMed ID: 3474375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids.
    Agrawal CM; Kennedy ME; Micallef DM
    J Biomed Mater Res; 1994 Aug; 28(8):851-9. PubMed ID: 7983083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer.
    Isobe M; Yamazaki Y; Oida S; Ishihara K; Nakabayashi N; Amagasa T
    J Biomed Mater Res; 1996 Nov; 32(3):433-8. PubMed ID: 8897149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo.
    Eliaz RE; Wallach D; Kost J
    Pharm Res; 2000 Dec; 17(12):1546-50. PubMed ID: 11303966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.