These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8361153)

  • 1. Dynamic model of the bronchial tree.
    Ginzburg I; Elad D
    J Biomed Eng; 1993 Jul; 15(4):283-8. PubMed ID: 8361153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of oscillatory airflow in a bronchial bifurcation.
    Elad D; Shochat A; Shiner RJ
    Respir Physiol; 1998 Apr; 112(1):95-111. PubMed ID: 9696286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pulmonary vascular pressure on bronchial collapsibility of excised dog lungs.
    Sasaki H; Takishima T; Sasaki T
    Jpn J Physiol; 1977; 27(2):157-66. PubMed ID: 916374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Air distribution in the bronchial tree of human lungs].
    Lai W; Tan X; Pei J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):229-32. PubMed ID: 15143546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.
    Ren S; Cai M; Shi Y; Xu W; Zhang XD
    Int J Numer Method Biomed Eng; 2018 Mar; 34(3):. PubMed ID: 28906592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of lung parenchyma on dynamic bronchial collapsibility of excised dog lungs.
    Sasaki H; Takishima T; Sasaki T
    J Appl Physiol Respir Environ Exerc Physiol; 1977 May; 42(5):699-705. PubMed ID: 863835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diameter-based reconstruction of the branching pattern of the human bronchial tree. Part I. Description and application.
    Phillips CG; Kaye SR; Schroter RC
    Respir Physiol; 1994 Oct; 98(2):193-217. PubMed ID: 7817050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation study of expiratory flow limitation in obstructive patients during mechanical ventilation.
    Barbini P; Brighenti C; Gnudi G
    Ann Biomed Eng; 2006 Dec; 34(12):1879-89. PubMed ID: 17061156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of steady inspiratory airflow through a three-generation model of the human central airways.
    Wilquem F; Degrez G
    J Biomech Eng; 1997 Feb; 119(1):59-65. PubMed ID: 9083850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.
    Kim CS; Brown LK; Lewars GG; Sackner MA
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jul; 55(1 Pt 1):154-63. PubMed ID: 6885565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between structure, function, and imaging in a three-dimensional model of the lung.
    Tgavalekos NT; Venegas JG; Suki B; Lutchen KR
    Ann Biomed Eng; 2003 Apr; 31(4):363-73. PubMed ID: 12723678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimation of bronchial tree zones involved in formation of human forced expiratory wheezes through vortex shedding mechanism, depending on the dynamic compression of central airways].
    Korenbaum VI; Pochekutova IA; Safronova MA
    Fiziol Cheloveka; 2015; 41(1):65-73. PubMed ID: 25857179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exhaled flow monitoring can detect bronchial flap-valve obstruction in a mechanical lung model.
    Breen PH; Serina ER; Barker SJ
    Anesth Analg; 1995 Aug; 81(2):292-6. PubMed ID: 7618717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady expiratory flow-pressure relationship in a model of the human bronchial tree.
    Reynolds DB
    J Biomech Eng; 1982 May; 104(2):153-8. PubMed ID: 7078131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isovolume pressure-flow relationships in intrapulmonary bronchi of excised dog lungs.
    Suzuki S; Sasaki H; Sekizawa K; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Feb; 52(2):295-303. PubMed ID: 7061285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lung surface tension on bronchial collapsibility in excised dog lungs.
    Nakamura M; Sasaki H; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):692-700. PubMed ID: 511675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimal bronchial tree may be dangerous.
    Mauroy B; Filoche M; Weibel ER; Sapoval B
    Nature; 2004 Feb; 427(6975):633-6. PubMed ID: 14961120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic flow characteristics in normal and asthmatic lungs.
    Kim M; Bordas R; Vos W; Hartley RA; Brightling CE; Kay D; Grau V; Burrowes KS
    Int J Numer Method Biomed Eng; 2015 Dec; 31(12):. PubMed ID: 26033976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical description of the human tracheobronchial tree geometry.
    Soong TT; Nicolaides P; Yu CP; Soong SC
    Respir Physiol; 1979 Jul; 37(2):161-72. PubMed ID: 472520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.