BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 8361205)

  • 1. Endothelium-dependent relaxation and interaction between indomethacin and L-NG-monomethylarginine in coronary bypass grafts.
    Qi X; Chen D
    J Thorac Cardiovasc Surg; 1993 Sep; 106(3):563-5. PubMed ID: 8361205
    [No Abstract]   [Full Text] [Related]  

  • 2. Endothelial function of human gastroepiploic artery. Implications for its use as a bypass graft.
    O'Neil GS; Chester AH; Allen SP; Luu TN; Tadjkarimi S; Ridley P; Khagani A; Musumeci F; Yacoub MH
    J Thorac Cardiovasc Surg; 1991 Oct; 102(4):561-5. PubMed ID: 1717794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of endogenous metabolites on autoregulation and dilational reserve of coronary vessels].
    Solodkov AP; Bozhko AP
    Biull Eksp Biol Med; 1993 May; 115(5):456-8. PubMed ID: 7519066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasomotor responses of canine coronary arterial rings to NG-monomethyl-L-arginine and N omega nitro L-arginine methyl ester.
    Winn MJ; Asante NK; Ku DD
    J Pharmacol Exp Ther; 1993 Jan; 264(1):265-70. PubMed ID: 8423529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage-induced nitric oxide and prostanoid dependent relaxation of arterial smooth muscles.
    Wang H; Mizuno R; Ohhashi T
    Can J Physiol Pharmacol; 1997 Jul; 75(7):789-95. PubMed ID: 9315345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin.
    Kimura K; Tsuda K; Baba A; Kawabe T; Boh-oka S; Ibata M; Moriwaki C; Hano T; Nishio I
    Biochem Biophys Res Commun; 2000 Jul; 273(2):745-9. PubMed ID: 10873674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries.
    Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles.
    Jimenez AH; Tanner MA; Caldwell WM; Myers PR
    Microvasc Res; 1996 May; 51(3):365-77. PubMed ID: 8992234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent vasoregulation of coronary artery diameter and blood flow.
    Vogel RA
    Circulation; 1993 Jul; 88(1):325-7. PubMed ID: 8319348
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of dopamine-mediated relaxation in experimental vein bypass grafts.
    Davies MG; Huynh TT; Hagen PO
    J Surg Res; 2000 Jul; 92(1):103-7. PubMed ID: 10864489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency in nitric oxide bioactivity in epicardial coronary arteries of cigarette smokers.
    Kugiyama K; Yasue H; Ohgushi M; Motoyama T; Kawano H; Inobe Y; Hirashima O; Sugiyama S
    J Am Coll Cardiol; 1996 Nov; 28(5):1161-7. PubMed ID: 8890810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced prostanoid-mediated vasorelaxation in pulmonary arteries isolated during experimental endotoxemia.
    Myers TP; Myers PR; Adams HR; Parker JL
    Shock; 1999 Jun; 11(6):436-42. PubMed ID: 10454834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the endotheliocyte activity of the coronary vessels under the influence of stress].
    Solodkov AP; Bozhko AP
    Fiziol Zh Im I M Sechenova; 1994 Apr; 80(4):65-71. PubMed ID: 7530089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous hyaluronidase induces release of nitric oxide from the coronary endothelium.
    Evora PR; Pearson PJ; Chua YL; Discigil B; Schaff HV
    J Thorac Cardiovasc Surg; 2000 Oct; 120(4):707-11. PubMed ID: 11003752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery.
    Wei W; Chen ZW; Yang Q; Jin H; Furnary A; Yao XQ; Yim AP; He GW
    Vascul Pharmacol; 2007 Apr; 46(4):253-9. PubMed ID: 17174609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of trypsin-induced endothelium-dependent vasorelaxation in the porcine coronary artery.
    Nakayama T; Hirano K; Nishimura J; Takahashi S; Kanaide H
    Br J Pharmacol; 2001 Oct; 134(4):815-26. PubMed ID: 11606322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis and actions of nitric oxide.
    Moncada S; Palmer RM
    Semin Perinatol; 1991 Feb; 15(1):16-9. PubMed ID: 2063225
    [No Abstract]   [Full Text] [Related]  

  • 18. A new role for prostaglandins in the regulation of peripheral resistance.
    Koller A; Kaley G
    Adv Prostaglandin Thromboxane Leukot Res; 1991; 21B():595-8. PubMed ID: 1825383
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of nitric oxide synthesis.
    Lefroy DC; Tousoulis D; Crake T
    Lancet; 1993 Dec; 342(8885):1487-8. PubMed ID: 7902503
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of basal release of nitric oxide on coronary flow and mechanical performance of the isolated rat heart.
    Amrani M; O'Shea J; Allen NJ; Harding SE; Jayakumar J; Pepper JR; Moncada S; Yacoub MH
    J Physiol; 1992 Oct; 456():681-7. PubMed ID: 1293292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.