BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8361395)

  • 1. On-line measurement of microvascular diameter and red blood cell velocity by a line-scan CCD image sensor.
    Rosen B; Paffhausen W
    Microvasc Res; 1993 Mar; 45(2):107-21. PubMed ID: 8361395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCD line-scan image sensor for the measurement of red cell velocity in microvessels.
    Goodman AH
    J Biomed Eng; 1986 Oct; 8(4):329-33. PubMed ID: 2945051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber optical spatial filter anemometry--intravital measurement of red blood flow velocity (RBCV) in the microcirculation.
    Hungerer S; Nolte D; Elstner B; Pröhl M; Messmer K
    Artif Cells Blood Substit Immobil Biotechnol; 2010 May; 38(3):119-28. PubMed ID: 20297922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of RBC velocities in the rat pial arteries with an image-intensified high-speed video camera system.
    Ishikawa M; Sekizuka E; Shimizu K; Yamaguchi N; Kawase T
    Microvasc Res; 1998 Nov; 56(3):166-72. PubMed ID: 9828154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intracranial pressure on the pial microcirculation in rats studied by a fiber-optic laser-Doppler anemometer microscope.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Front Med Biol Eng; 1999; 9(2):113-21. PubMed ID: 10450498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation.
    Golster H; Lindén M; Bertuglia S; Colantuoni A; Nilsson G; Sjöberg F
    Microvasc Res; 1999 Jul; 58(1):62-73. PubMed ID: 10388604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A; Sugii Y; Minamiyama M; Niimi H
    Clin Hemorheol Microcirc; 2003; 29(3-4):445-55. PubMed ID: 14724373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of carbocyanine-labeled erythrocytes for microvascular measurements.
    Unthank JL; Lash JM; Nixon JC; Sidner RA; Bohlen HG
    Microvasc Res; 1993 Mar; 45(2):193-210. PubMed ID: 8361402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional analysis of contrast-filled microvessel diameters.
    Avinash GB; Quirk WS; Nuttall AL
    Microvasc Res; 1993 Mar; 45(2):180-92. PubMed ID: 8361401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocimetry of red blood cells in microvessels by the dual-slit method: effect of velocity gradients.
    Roman S; Lorthois S; Duru P; Risso F
    Microvasc Res; 2012 Nov; 84(3):249-61. PubMed ID: 22963788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the accuracy of photometric techniques used to measure some in vivo microvascular blood flow parameters.
    Cokelet GR; Pries AR; Kiani MF
    Microcirculation; 1998; 5(1):61-70. PubMed ID: 9702723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method of rotation angle measurement in machine vision based on calibration pattern with spot array.
    Li W; Jin J; Li X; Li B
    Appl Opt; 2010 Feb; 49(6):1001-6. PubMed ID: 20174168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of flow dynamics in the microcirculation.
    Intaglietta M
    Med Instrum; 1977; 11(3):149-52. PubMed ID: 875763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The time-space correlation method for measurement of erythrocyte velocity in microvessels using a CCD linear image sensor.
    Watanabe M; Senga Y; Shiga T; Minami S
    Microvasc Res; 1991 Jan; 41(1):41-6. PubMed ID: 1828853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, design and validation of a novel microfluidic sensor for in-vitro isotonic measurement of microvessel contraction/dilation.
    Izzo I; Dario P
    Biomed Microdevices; 2007 Feb; 9(1):69-81. PubMed ID: 17106638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digitally calibrated eye movement measurement system.
    Baczkowski LS; Enderle JD; Engelken EJ
    Biomed Sci Instrum; 1991; 27():145-52. PubMed ID: 2065149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):489-506. PubMed ID: 16147466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Establishment of a system for measuring blood flow velocity of rat microvessel using dark background fluorescent image analysis method].
    Wu X; Chen H; Yan W; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):1063-6. PubMed ID: 16294755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow visualization of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope.
    Suzuki T; Yanagi K; Ookawa K; Hatakeyama K; Ohshima N
    Front Med Biol Eng; 1996; 7(4):253-63. PubMed ID: 8956966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.