BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8361486)

  • 1. [Nonenzymatic covalent modification of human hemoglobin by pyridoxal-5-phosphate under the effect of visible light].
    Stepuro II; Konovalova NV; Solodunov AA; Tyshchenko AS
    Mol Biol (Mosk); 1993; 27(4):790-7. PubMed ID: 8361486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of intracellular hemoglobin with pyridoxal and pyridoxal 5'-phosphate.
    Kark JA; Bongiovanni R; Hicks CU; Tarassoff PG; Hannah JS; Yoshida GY
    Blood Cells; 1982; 8(2):299-314. PubMed ID: 7159754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical examination of the reaction of pyridoxal 5-phosphate with human hemoglobin Ao.
    Marini MA; Moore GL; Fishman RM; Jessee R; Medina F; Snell SM; Zegna AI
    Biopolymers; 1989 Dec; 28(12):2071-83. PubMed ID: 2605311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR studies of the stability, protonation States, and tautomerism of (13)C- AND (15)N-labeled aldimines of the coenzyme pyridoxal 5'-phosphate in water.
    Chan-Huot M; Sharif S; Tolstoy PM; Toney MD; Limbach HH
    Biochemistry; 2010 Dec; 49(51):10818-30. PubMed ID: 21067170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid photodynamics of vitamin B6 coenzyme pyridoxal 5'-phosphate and its Schiff bases in solution.
    Hill MP; Carroll EC; Toney MD; Larsen DS
    J Phys Chem B; 2008 May; 112(18):5867-73. PubMed ID: 18416573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute.
    Chen YC; Chang WH; Chang Y; Huang CM; Sung HW
    Biotechnol Bioeng; 2004 Jul; 87(1):34-42. PubMed ID: 15211486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of structural heterogeneity of polymerized hemoglobin using biochemical and immunochemical methods].
    Viazova EP; Azhigirova MA; Shubalova AL; Groznaia TG; Vashkevich MG
    Biull Eksp Biol Med; 1988 Oct; 106(10):446-8. PubMed ID: 2461233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the polymerization of pyridoxylated hemoglobin with glutaraldehyde.
    Marini MA; Moore GL; Christensen SM; Fishman RM; Jessee RG; Medina F; Snell SM; Zegna AI
    Biopolymers; 1990; 29(6-7):871-82. PubMed ID: 2114931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of Schiff bases of O-phosphorylethanolamine and O-phospho-D,L-serine with pyridoxal 5'-phosphate. experimental and theoretical studies.
    Vilanova B; Gallardo JM; Caldés C; Adrover M; Ortega-Castro J; Muñoz F; Donoso J
    J Phys Chem A; 2012 Mar; 116(8):1897-905. PubMed ID: 22280506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Localization of pyridoxal-5-phosphate, covalently bound with human hemoglobin. Spectrofluorimetric studies].
    Zavodnik IB; Konovalova NV; Stepuro II
    Biofizika; 1999; 44(3):412-20. PubMed ID: 10439858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEGylation of Val-1(alpha) destabilizes the tetrameric structure of hemoglobin.
    Hu T; Li D; Manjula BN; Brenowitz M; Prabhakaran M; Acharya SA
    Biochemistry; 2009 Jan; 48(3):608-16. PubMed ID: 19119852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Histidine-152 in cofactor orientation in the PLP-dependent O-acetylserine sulfhydrylase reaction.
    Tai CH; Rabeh WM; Guan R; Schnackerz KD; Cook PF
    Arch Biochem Biophys; 2008 Apr; 472(2):115-25. PubMed ID: 18275838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human hemoglobin adducts following exposure to hexahydrophthalic anhydride and methylhexahydrophthalic anhydride.
    Lindh CH; Jönsson BA
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):152-60. PubMed ID: 9878586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of pyridoxal-5'-phosphate and black-eye pea trypsin and chymotrypsin inhibitor.
    Ventura MM; Ikemoto H; Mizuta K
    An Acad Bras Cienc; 1983 Dec; 55(4):409-15. PubMed ID: 6679184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst.
    Rege VD; Kredich NM; Tai CH; Karsten WE; Schnackerz KD; Cook PF
    Biochemistry; 1996 Oct; 35(41):13485-93. PubMed ID: 8873618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved method to measure aldehyde adducts to N-terminal valine in hemoglobin using 5-hydroxymethylfurfural and 2,5-furandialdehyde as model compounds.
    Davies R; Hedebrant U; Athanassiadis I; Rydberg P; Törnqvist M
    Food Chem Toxicol; 2009 Aug; 47(8):1950-7. PubMed ID: 19457441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic study of the Schiff bases of dodecylamine with pyridoxal 5'-phosphate and 5'-deoxypyridoxal. A model for the Schiff bases of pyridoxal 5'-phosphate in biological systems.
    Vázquez MA; Muñoz F; Donoso J; García Blanco F
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):759-67. PubMed ID: 1953669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.
    Sharif S; Schagen D; Toney MD; Limbach HH
    J Am Chem Soc; 2007 Apr; 129(14):4440-55. PubMed ID: 17371021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase.
    Kery V; Poneleit L; Meyer JD; Manning MC; Kraus JP
    Biochemistry; 1999 Mar; 38(9):2716-24. PubMed ID: 10052942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.