BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 8361536)

  • 1. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum.
    Shidara M; Kawano K; Gomi H; Kawato M
    Nature; 1993 Sep; 365(6441):50-2. PubMed ID: 8361536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes.
    Gomi H; Shidara M; Takemura A; Inoue Y; Kawano K; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):818-31. PubMed ID: 9705471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in neuronal firing patterns in the process of motor command generation for the ocular following response.
    Takemura A; Inoue Y; Gomi H; Kawato M; Kawano K
    J Neurophysiol; 2001 Oct; 86(4):1750-63. PubMed ID: 11600636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical analysis of the characteristics of the system connecting the cerebellar ventral paraflocculus and extraoculomotor nucleus of alert monkeys during upward ocular following responses.
    Yamamoto K; Kobayashi Y; Takemura A; Kawano K; Kawato M
    Neurosci Res; 2000 Dec; 38(4):425-35. PubMed ID: 11164569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force field effects on cerebellar Purkinje cell discharge with implications for internal models.
    Pasalar S; Roitman AV; Durfee WK; Ebner TJ
    Nat Neurosci; 2006 Nov; 9(11):1404-11. PubMed ID: 17028585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oculomotor control by cerebellar flocculus studied in the monkey].
    Ohno M
    Hokkaido Igaku Zasshi; 1984 Mar; 59(2):117-27. PubMed ID: 6745835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements.
    Kitama T; Omata T; Mizukoshi A; Ueno T; Sato Y
    J Neurophysiol; 1999 Nov; 82(5):2235-48. PubMed ID: 10561402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex predictive eye pursuit in monkey: a model system for cerebellar studies of skilled movement.
    Kettner RE; Suh M; Davis D; Leung HC
    Arch Ital Biol; 2002 Oct; 140(4):331-40. PubMed ID: 12228986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information representation by Purkinje cells in the cerebellum during ocular following responses.
    Kawano K; Shidara M
    Neurosci Res; 1994 Nov; 21(1):13-7. PubMed ID: 7708291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey.
    Suh M; Leung HC; Kettner RE
    J Neurophysiol; 2000 Oct; 84(4):1835-50. PubMed ID: 11024076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor dynamics encoding in the rostral zone of the cat cerebellar flocculus during vertical optokinetic eye movements.
    Mizukoshi A; Kitama T; Omata T; Ueno T; Kawato M; Sato Y
    Exp Brain Res; 2000 May; 132(2):260-8. PubMed ID: 10853950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
    Yamamoto K; Kawato M; Kotosaka S; Kitazawa S
    J Neurophysiol; 2007 Feb; 97(2):1588-99. PubMed ID: 17079350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic characterization of agonist and antagonist oculomotoneurons during conjugate and disconjugate eye movements.
    Van Horn MR; Cullen KE
    J Neurophysiol; 2009 Jul; 102(1):28-40. PubMed ID: 19403746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements.
    Shaikh AG; Ghasia FF; Dickman JD; Angelaki DE
    J Neurophysiol; 2005 Feb; 93(2):853-63. PubMed ID: 15371498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys.
    Nitta T; Akao T; Kurkin S; Fukushima K
    Cereb Cortex; 2008 May; 18(5):1042-57. PubMed ID: 17716988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes.
    Kobayashi Y; Kawano K; Takemura A; Inoue Y; Kitama T; Gomi H; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):832-48. PubMed ID: 9705472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate.
    Nagao S
    Neuroreport; 1992 Jan; 3(1):13-6. PubMed ID: 1611029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis.
    Suzuki DA; Yamada T; Yee RD
    J Neurophysiol; 2003 Apr; 89(4):2146-58. PubMed ID: 12686582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.