These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8361540)

  • 1. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo.
    Sheng M; Liao YJ; Jan YN; Jan LY
    Nature; 1993 Sep; 365(6441):72-5. PubMed ID: 8361540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons.
    Wang H; Kunkel DD; Martin TM; Schwartzkroin PA; Tempel BL
    Nature; 1993 Sep; 365(6441):75-9. PubMed ID: 8361541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion.
    Dodson PD; Billups B; Rusznák Z; Szûcs G; Barker MC; Forsythe ID
    J Physiol; 2003 Jul; 550(Pt 1):27-33. PubMed ID: 12777451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIP domain prevents N-type inactivation in voltage-gated potassium channels.
    Roeper J; Sewing S; Zhang Y; Sommer T; Wanner SG; Pongs O
    Nature; 1998 Jan; 391(6665):390-3. PubMed ID: 9450755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons.
    Shen W; Hernandez-Lopez S; Tkatch T; Held JE; Surmeier DJ
    J Neurophysiol; 2004 Mar; 91(3):1337-49. PubMed ID: 13679409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteromultimeric Kv1 channels contribute to myogenic control of arterial diameter.
    Plane F; Johnson R; Kerr P; Wiehler W; Thorneloe K; Ishii K; Chen T; Cole W
    Circ Res; 2005 Feb; 96(2):216-24. PubMed ID: 15618540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IA potassium channels.
    Angelova PR; Müller WS
    Eur J Neurosci; 2009 May; 29(10):1943-50. PubMed ID: 19453640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concatemers of brain Kv1 channel alpha subunits that give similar K+ currents yield pharmacologically distinguishable heteromers.
    Sokolov MV; Shamotienko O; Dhochartaigh SN; Sack JT; Dolly JO
    Neuropharmacology; 2007 Aug; 53(2):272-82. PubMed ID: 17637465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromyotonia and limbic encephalitis sera target mature Shaker-type K+ channels: subunit specificity correlates with clinical manifestations.
    Kleopa KA; Elman LB; Lang B; Vincent A; Scherer SS
    Brain; 2006 Jun; 129(Pt 6):1570-84. PubMed ID: 16613892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of potassium channel Kv3.4 subunits with pre- and post-synaptic structures in brainstem and spinal cord.
    Brooke RE; Atkinson L; Batten TF; Deuchars SA; Deuchars J
    Neuroscience; 2004; 126(4):1001-10. PubMed ID: 15207333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal transmission stimulates the phosphorylation of Kv1.4 channel at Ser229 through protein kinase A1.
    Tao Y; Zeng R; Shen B; Jia J; Wang Y
    J Neurochem; 2005 Sep; 94(6):1512-22. PubMed ID: 16000151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels.
    Li H; Guo W; Mellor RL; Nerbonne JM
    J Mol Cell Cardiol; 2005 Jul; 39(1):121-32. PubMed ID: 15878168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes.
    Hopkins WF
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1051-60. PubMed ID: 9618407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells.
    Guo W; Kamiya K; Hojo M; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jul; 30(7):1449-55. PubMed ID: 9710812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered K+ channel subunit composition following hormone induction of Kv1.5 gene expression.
    Takimoto K; Levitan ES
    Biochemistry; 1996 Nov; 35(45):14149-56. PubMed ID: 8916900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kv1.1/1.2 channels are downstream effectors of nitric oxide on synaptic GABA release to preautonomic neurons in the paraventricular nucleus.
    Yang Q; Chen SR; Li DP; Pan HL
    Neuroscience; 2007 Oct; 149(2):315-27. PubMed ID: 17869444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit combinations defined for K+ channel Kv1 subtypes in synaptic membranes from bovine brain.
    Shamotienko OG; Parcej DN; Dolly JO
    Biochemistry; 1997 Jul; 36(27):8195-201. PubMed ID: 9204863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.