These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Spinal antinociception: comparison of a dermorphin tetrapeptide analogue, [D-arginine2, sarcosine4]-dermorphin (1-4) and morphine in rats. Nakata N; Sakurada S; Sakurada T; Kawamura S; Kisara K; Suzuki K Neuropharmacology; 1990 Apr; 29(4):337-41. PubMed ID: 2342636 [TBL] [Abstract][Full Text] [Related]
4. Comparison of effect of [D-Arg2,Sar4]-dermorphin (1-4) and morphine on mouse small intestinal transit and electrically evoked contraction of guinea pig ileum. Nakata N; Sakurada S; Sakurada T; Tan-No K; Kisara K Methods Find Exp Clin Pharmacol; 1998 Apr; 20(3):193-8. PubMed ID: 9646281 [TBL] [Abstract][Full Text] [Related]
5. Physical dependence of a dermorphin tetrapeptide analog, [D-Arg2, Sar4]-dermorphin (1-4) in the rat. Nakata N; Sakurada S; Sakurada T; Kisara K; Sasaki Y; Suzuki K Pharmacol Biochem Behav; 1986 Jan; 24(1):27-31. PubMed ID: 3945663 [TBL] [Abstract][Full Text] [Related]
6. Tolerance and dependence following chronic intracerebroventricular infusions of Tyr-D-Arg2-Phe-Sar4 (TAPS). Vonhof S; Gudka BD; Sirén AL Eur J Pharmacol; 2003 Jan; 459(1):41-8. PubMed ID: 12505532 [TBL] [Abstract][Full Text] [Related]
7. Cross-tolerance between the different mu-opioid receptor agonists endomorphin-1, endomorphin-2 and morphine at the spinal level in the rat. Labuz D; Przewlocki R; Przewlocka B Neurosci Lett; 2002 Dec; 334(2):127-30. PubMed ID: 12435488 [TBL] [Abstract][Full Text] [Related]
8. Production of antinociception by peripheral administration of [Lys7]dermorphin, a naturally occurring peptide with high affinity for mu-opioid receptors. Negri L; Lattanzi R; Melchiorri P Br J Pharmacol; 1995 Jan; 114(1):57-66. PubMed ID: 7712029 [TBL] [Abstract][Full Text] [Related]
9. Morphine dosing strategy plays a key role in the generation and duration of the produced antinociceptive tolerance. Paul AK; Gueven N; Dietis N Neuropharmacology; 2017 Jul; 121():158-166. PubMed ID: 28450061 [TBL] [Abstract][Full Text] [Related]
10. Antinociceptive and morphine modulatory actions of spinal orphanin FQ. Jhamandas KH; Sutak M; Henderson G Can J Physiol Pharmacol; 1998 Mar; 76(3):314-24. PubMed ID: 9673795 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the antinociceptive effects of new [D-Arg2]-dermorphin tetrapeptide analogs and morphine in mice. Chaki K; Sakurada S; Sakurada T; Sato T; Kawamura S; Kisara K; Watanabe H; Suzuki K Pharmacol Biochem Behav; 1988 Oct; 31(2):439-44. PubMed ID: 2907624 [TBL] [Abstract][Full Text] [Related]
12. Antinociception and physical dependence produced by [D-Arg2] dermorphin tetrapeptide analogues and morphine in rats. Chaki K; Kawamura S; Kisara K; Sakurada S; Sakurada T; Sasaki Y; Sato T; Susuki K Br J Pharmacol; 1988 Sep; 95(1):15-22. PubMed ID: 2905901 [TBL] [Abstract][Full Text] [Related]
13. Lack of cross-tolerance to the antinociceptive effects of systemic and topical cannabinoids in morphine-tolerant mice. Yeşilyurt O; Dogrul A Neurosci Lett; 2004 Nov; 371(2-3):122-7. PubMed ID: 15519741 [TBL] [Abstract][Full Text] [Related]
14. Cross-tolerance between dermorphin and morphine to analgesia and catalepsy in rats. Broccardo M; Improta G Peptides; 1985; 6 Suppl 3():165-9. PubMed ID: 3831961 [TBL] [Abstract][Full Text] [Related]
15. Role of opioid receptors in the spinal antinociceptive effects of neuropeptide FF analogues. Gouardères C; Jhamandas K; Sutak M; Zajac JM Br J Pharmacol; 1996 Feb; 117(3):493-501. PubMed ID: 8821539 [TBL] [Abstract][Full Text] [Related]
16. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Hao JX; Wiesenfeld-Hallin Z; Xu XJ Neurosci Lett; 1997 Feb; 223(1):49-52. PubMed ID: 9058420 [TBL] [Abstract][Full Text] [Related]