These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8361643)
21. Laminar organization of spinal dorsal horn neurones activated by C- vs. A-heat nociceptors and their descending control from the periaqueductal grey in the rat. Koutsikou S; Parry DM; MacMillan FM; Lumb BM Eur J Neurosci; 2007 Aug; 26(4):943-52. PubMed ID: 17714188 [TBL] [Abstract][Full Text] [Related]
22. Subnuclear localization of FOS-like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation. Hermanson O; Blomqvist A J Comp Neurol; 1996 Apr; 368(1):45-56. PubMed ID: 8725293 [TBL] [Abstract][Full Text] [Related]
23. Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins. Lantéri-Minet M; Isnardon P; de Pommery J; Menétrey D Neuroscience; 1993 Aug; 55(3):737-53. PubMed ID: 8413935 [TBL] [Abstract][Full Text] [Related]
24. Distinct central representations of inescapable and escapable pain: observations and speculation. Keay KA; Bandler R Exp Physiol; 2002 Mar; 87(2):275-9. PubMed ID: 11856974 [TBL] [Abstract][Full Text] [Related]
25. Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal grey are selective for the nociceptive responses of rat dorsal horn neurones. Waters AJ; Lumb BM Brain Res; 1997 Mar; 752(1-2):239-49. PubMed ID: 9106463 [TBL] [Abstract][Full Text] [Related]
26. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation. Hoskin KL; Bulmer DC; Lasalandra M; Jonkman A; Goadsby PJ J Anat; 2001 Jan; 198(Pt 1):29-35. PubMed ID: 11215764 [TBL] [Abstract][Full Text] [Related]
27. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. Bernard JF; Dallel R; Raboisson P; Villanueva L; Le Bars D J Comp Neurol; 1995 Mar; 353(4):480-505. PubMed ID: 7759612 [TBL] [Abstract][Full Text] [Related]
28. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Hattori Y; Watanabe M; Iwabe T; Tanaka E; Nishi M; Aoyama J; Satoda T; Uchida T; Tanne K Brain Res; 2004 Sep; 1021(2):183-91. PubMed ID: 15342266 [TBL] [Abstract][Full Text] [Related]
29. Increased c-Fos expression in select lateral parabrachial subnuclei following chemical versus electrical stimulation of the dorsal periaqueductal gray in rats. Hayward LF; Castellanos M Brain Res; 2003 Jun; 974(1-2):153-66. PubMed ID: 12742633 [TBL] [Abstract][Full Text] [Related]
30. Non-serotonergic midbrain neurons are involved in picrotoxin-induced analgesia. An immunohistochemical study in the rat. Koyama N; Nishio T; Yokota T Neurosci Lett; 2000 Sep; 291(3):147-50. PubMed ID: 10984628 [TBL] [Abstract][Full Text] [Related]
31. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. Keay KA; Feil K; Gordon BD; Herbert H; Bandler R J Comp Neurol; 1997 Aug; 385(2):207-29. PubMed ID: 9268124 [TBL] [Abstract][Full Text] [Related]
32. Two forms of inhibition of spinothalamic tract neurons produced by stimulation of the periaqueductal gray and the cerebral cortex. Zhang DX; Owens CM; Willis WD J Neurophysiol; 1991 Jun; 65(6):1567-79. PubMed ID: 1875263 [TBL] [Abstract][Full Text] [Related]
33. Distribution of the metabotropic glutamate receptor subtype mGluR5 in rat midbrain periaqueductal grey and relationship with ascending spinofugal afferents. Azkue JJ; Knöpfel T; Kuhn R; Mateos JM; Grandes P Neurosci Lett; 1997 May; 228(1):1-4. PubMed ID: 9197273 [TBL] [Abstract][Full Text] [Related]
34. Medial preoptic area afferents to periaqueductal gray medullo-output neurons: a combined Fos and tract tracing study. Rizvi TA; Murphy AZ; Ennis M; Behbehani MM; Shipley MT J Neurosci; 1996 Jan; 16(1):333-44. PubMed ID: 8613800 [TBL] [Abstract][Full Text] [Related]
35. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study. Snowball RK; Semenenko FM; Lumb BM Neuroscience; 2000; 99(2):351-61. PubMed ID: 10938441 [TBL] [Abstract][Full Text] [Related]
36. Suppressive effects of Neiting acupuncture on toothache: an experimental analysis on Fos expression evoked by tooth pulp stimulation in the trigeminal subnucleus pars caudalis and the periaqueductal gray of rats. Sheng LL; Nishiyama K; Honda T; Sugiura M; Yaginuma H; Sugiura Y Neurosci Res; 2000 Dec; 38(4):331-9. PubMed ID: 11164559 [TBL] [Abstract][Full Text] [Related]
37. Serotoninergic neurons in the brainstem expressing FOS protein after orofacial noxious stimulation: an immunocytochemical double-labeling study. Lang B; Li YQ J Hirnforsch; 1998; 39(2):263-8. PubMed ID: 10022350 [TBL] [Abstract][Full Text] [Related]
38. Patterns of FOS expression in the spinal cord and periaqueductal grey matter of 6OHDA-lesioned rats. Reyes S; Mitrofanis J Int J Neurosci; 2008 Aug; 118(8):1053-79. PubMed ID: 18576208 [TBL] [Abstract][Full Text] [Related]
39. Somatosensory projection to the mesencephalon: an anatomical study in the monkey. Wiberg M; Westman J; Blomqvist A J Comp Neurol; 1987 Oct; 264(1):92-117. PubMed ID: 2445793 [TBL] [Abstract][Full Text] [Related]
40. Neurons in the superficial dorsal horn of the rat spinal cord projecting to the medullary ventrolateral reticular formation express c-fos after noxious stimulation of the skin. Tavares I; Lima D; Coimbra A Brain Res; 1993 Oct; 623(2):278-86. PubMed ID: 8221109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]