BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8361768)

  • 21. SmgGDS displays differential binding and exchange activity towards different Ras isoforms.
    Vikis HG; Stewart S; Guan KL
    Oncogene; 2002 Apr; 21(15):2425-32. PubMed ID: 11948427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different structural organization of Ras and Rho effector domains.
    Self AJ; Paterson HF; Hall A
    Oncogene; 1993 Mar; 8(3):655-61. PubMed ID: 8437849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity.
    Quilliam LA; Huff SY; Rabun KM; Wei W; Park W; Broek D; Der CJ
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8512-6. PubMed ID: 8078913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transformation suppressor activity of C3G is independent of its CDC25-homology domain.
    Guerrero C; Fernandez-Medarde A; Rojas JM; Font de Mora J; Esteban LM; Santos E
    Oncogene; 1998 Feb; 16(5):613-24. PubMed ID: 9482107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RalGDS-like factor (Rlf) is a novel Ras and Rap 1A-associating protein.
    Wolthuis RM; Bauer B; van 't Veer LJ; de Vries-Smits AM; Cool RH; Spaargaren M; Wittinghofer A; Burgering BM; Bos JL
    Oncogene; 1996 Jul; 13(2):353-62. PubMed ID: 8710374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. R-Ras is regulated by activators and effectors distinct from those that control Ras function.
    Huff SY; Quilliam LA; Cox AD; Der CJ
    Oncogene; 1997 Jan; 14(2):133-43. PubMed ID: 9010215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rho family proteins and Ras transformation: the RHOad less traveled gets congested.
    Zohn IM; Campbell SL; Khosravi-Far R; Rossman KL; Der CJ
    Oncogene; 1998 Sep; 17(11 Reviews):1415-38. PubMed ID: 9779988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav.
    Crespo P; Bustelo XR; Aaronson DS; Coso OA; Lopez-Barahona M; Barbacid M; Gutkind JS
    Oncogene; 1996 Aug; 13(3):455-60. PubMed ID: 8760286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras.
    Schweins T; Geyer M; Kalbitzer HR; Wittinghofer A; Warshel A
    Biochemistry; 1996 Nov; 35(45):14225-31. PubMed ID: 8916907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP.
    Geyer M; Schweins T; Herrmann C; Prisner T; Wittinghofer A; Kalbitzer HR
    Biochemistry; 1996 Aug; 35(32):10308-20. PubMed ID: 8756686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EPS8 and E3B1 transduce signals from Ras to Rac.
    Scita G; Nordstrom J; Carbone R; Tenca P; Giardina G; Gutkind S; Bjarnegård M; Betsholtz C; Di Fiore PP
    Nature; 1999 Sep; 401(6750):290-3. PubMed ID: 10499589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of guanine exchange factor key residues involved in exchange activity and Ras interaction.
    Camus C; Hermann-Le Denmat S; Jacquet M
    Oncogene; 1995 Sep; 11(5):951-9. PubMed ID: 7675454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TC21 and Ras share indistinguishable transforming and differentiating activities.
    Graham SM; Oldham SM; Martin CB; Drugan JK; Zohn IE; Campbell S; Der CJ
    Oncogene; 1999 Mar; 18(12):2107-16. PubMed ID: 10321735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor.
    York RD; Yao H; Dillon T; Ellig CL; Eckert SP; McCleskey EW; Stork PJ
    Nature; 1998 Apr; 392(6676):622-6. PubMed ID: 9560161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras.
    Gale NW; Kaplan S; Lowenstein EJ; Schlessinger J; Bar-Sagi D
    Nature; 1993 May; 363(6424):88-92. PubMed ID: 8386805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of the Drosophila C3G leads to cell fate changes and overproliferation during development, mediated by the RAS-MAPK pathway and RAP1.
    Ishimaru S; Williams R; Clark E; Hanafusa H; Gaul U
    EMBO J; 1999 Jan; 18(1):145-55. PubMed ID: 9878058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of R-ras3: a novel member of the RAS gene family with a non-ubiquitous pattern of tissue distribution.
    Kimmelman A; Tolkacheva T; Lorenzi MV; Osada M; Chan AM
    Oncogene; 1997 Nov; 15(22):2675-85. PubMed ID: 9400994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular approaches towards an anti-ras drug.
    Sigal IS; Smith GM; Jurnak F; Marsico-Ahern JD; D'Alonzo JS; Scolnick EM; Gibbs JB
    Anticancer Drug Des; 1987 Oct; 2(2):107-15. PubMed ID: 3130069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 'Hot spot' amino acid distribution in Ha-ras oncogene product p21: relationship to guanine binding site.
    Cosic I; Hearn MT
    J Mol Recognit; 1991; 4(2-3):57-62. PubMed ID: 1810347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation.
    Pai EF; Kabsch W; Krengel U; Holmes KC; John J; Wittinghofer A
    Nature; 1989 Sep; 341(6239):209-14. PubMed ID: 2476675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.