BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 836276)

  • 1. Cyclocreatine phosphate as a substitute for creatine phosphate in vertebrate tissues. Energistic considerations.
    Annesley TM; Walker JB
    Biochem Biophys Res Commun; 1977 Jan; 74(1):185-90. PubMed ID: 836276
    [No Abstract]   [Full Text] [Related]  

  • 2. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Griffiths GR; Walker JB
    J Biol Chem; 1976 Apr; 251(7):2049-54. PubMed ID: 1270421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced ability of skeletal muscle containing cyclocreatine phosphate to sustain ATP levels during ischemia following beta-adrenergic stimulation.
    Turner DM; Walker JB
    J Biol Chem; 1987 May; 262(14):6605-9. PubMed ID: 3571272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and utilization of novel high energy phosphate reservoirs in Ehrlich ascites tumor cells. Cyclocreatine-3-P and creatine-P.
    Annesley TM; Walker JB
    J Biol Chem; 1978 Nov; 253(22):8120-5. PubMed ID: 568626
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves.
    Woznicki DT; Walker JB
    J Neurochem; 1980 May; 34(5):1247-53. PubMed ID: 7373304
    [No Abstract]   [Full Text] [Related]  

  • 7. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle.
    Wallimann T; Eppenberger HM
    Cell Muscle Motil; 1985; 6():239-85. PubMed ID: 3888375
    [No Abstract]   [Full Text] [Related]  

  • 8. Histochemical demonstration of ATP. Creatine phosphotransferase in rat skeletal muscle.
    Hori SH
    Histochemie; 1966; 7(4):297-302. PubMed ID: 5960279
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 10. Creatine kinase from brain: kinetic aspects.
    Dawson DM
    J Neurochem; 1970 Jan; 17(1):65-74. PubMed ID: 5494040
    [No Abstract]   [Full Text] [Related]  

  • 11. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 12. Function of creatine kinase localization in muscle contraction.
    Koons S; Cooke R
    Adv Exp Med Biol; 1986; 194():129-37. PubMed ID: 3529853
    [No Abstract]   [Full Text] [Related]  

  • 13. A comparison of in vivo catalysis by creatine kinase in avian skeletal muscles with different fibre composition.
    Smith MB; Briggs RW; Shoubridge EA; Hayes DJ; Radda GK
    Biochim Biophys Acta; 1985 Jul; 846(1):174-8. PubMed ID: 4016154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 17. Formation of a supplemental long time-constant reservoir of high energy phosphate by brain in vivo and in vitro and its reversible depletion by potassium depolarization.
    Woznicki DT; Walker JB
    J Neurochem; 1979 Jul; 33(1):75-80. PubMed ID: 458473
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of creatine and phosphocreatine accumulation in skeletal muscle and heart.
    Fitch CD; Chevli R
    Metabolism; 1980 Jul; 29(7):686-90. PubMed ID: 7382831
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.