These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8362761)

  • 1. Physiological evaluation of liquid-barrier, vapor-permeable protective clothing ensembles for work in hot environments.
    Kenney WL; Hyde DE; Bernard TE
    Am Ind Hyg Assoc J; 1993 Jul; 54(7):397-402. PubMed ID: 8362761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heat stress on physiological factors for industrial workers performing routine work and wearing impermeable vapor-barrier clothing.
    Mihal CP
    Am Ind Hyg Assoc J; 1981 Feb; 42(2):97-103. PubMed ID: 7234683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal characteristics of clothing ensembles for use in heat stress analysis.
    Barker DW; Kini S; Bernard TE
    Am Ind Hyg Assoc J; 1999; 60(1):32-7. PubMed ID: 10028614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of air permeability characteristics of protective garments on the induced physiological strain under exercise-heat stress.
    Epstein Y; Heled Y; Ketko I; Muginshtein J; Yanovich R; Druyan A; Moran DS
    Ann Occup Hyg; 2013 Aug; 57(7):866-74. PubMed ID: 23378525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thermal environment and chemical protective clothing on work tolerance, physiological responses, and subjective ratings.
    White MK; Hodous TK; Vercruyssen M
    Ergonomics; 1991 Apr; 34(4):445-57. PubMed ID: 1860463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a military chemical suit and an industrial usage vapor barrier suit across two thermal environments.
    Reneau PD; Bishop PA; Ashley CD
    Am Ind Hyg Assoc J; 1997 Sep; 58(9):646-9. PubMed ID: 9291562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress in chemical protective clothing: porosity and vapour resistance.
    Havenith G; den Hartog E; Martini S
    Ergonomics; 2011 May; 54(5):497-507. PubMed ID: 21547794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hoods and Flame-Retardant Fabrics on WBGT Clothing Adjustment Factors.
    Ashley CD; Bernard TE
    J Occup Environ Hyg; 2008 Jan; 5(1):59-62. PubMed ID: 18041645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat stress evaluation of anti-exposure flight garments.
    Kaufman JW
    Aviat Space Environ Med; 1988 Mar; 59(3):213-9. PubMed ID: 3355475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat strain while wearing the current Canadian or a new hot-weather French NBC protective clothing ensemble.
    McLellan TM
    Aviat Space Environ Med; 1996 Nov; 67(11):1057-62. PubMed ID: 8908344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of effective wet bulb globe temperature for vapor impermeable protective clothing.
    Sakoi T; Mochida T; Kurazumi Y; Sawada SI; Horiba Y; Kuwabara K
    J Therm Biol; 2018 Jan; 71():10-16. PubMed ID: 29301678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical heat stress evaluation of clothing ensembles with different levels of porosity.
    Bernard T; Ashley C; Trentacosta J; Kapur V; Tew S
    Ergonomics; 2010 Aug; 53(8):1048-58. PubMed ID: 20658399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychrometric limits to prolonged work in protective clothing ensembles.
    Kenney WL; Lewis DA; Armstrong CG; Hyde DE; Dyksterhouse TS; Fowler SR; Williams DA
    Am Ind Hyg Assoc J; 1988 Aug; 49(8):390-5. PubMed ID: 3177217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and subjective responses to working in disposable protective coveralls and respirators commonly used by the asbestos abatement industry.
    White MK; Hodous TK; Hudnall JB
    Am Ind Hyg Assoc J; 1989 Jun; 50(6):313-9. PubMed ID: 2735315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal strain resulting from protective clothing of an armored vehicle crew in warm conditions.
    Henane R; Bittel J; Viret R; Morino S
    Aviat Space Environ Med; 1979 Jun; 50(6):599-603. PubMed ID: 475709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site.
    Paull JM; Rosenthal FS
    Am Ind Hyg Assoc J; 1987 May; 48(5):458-63. PubMed ID: 3591668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of activewear worn under standard work coveralls on whole-body heat loss.
    Stapleton JM; Hardcastle SG; Kenny GP
    J Occup Environ Hyg; 2011 Nov; 8(11):652-61. PubMed ID: 21966970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and mechanical properties of aluminized fabrics for use in ferrous metal handling operations.
    Wren JE; Scott WD; Bates CE
    Am Ind Hyg Assoc J; 1977 Nov; 38(11):603-12. PubMed ID: 930809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of physiological responses to two types of particle barrier, vapor permeable clothing ensembles.
    Reneau PD; Bishop PA; Ashley CD
    Am Ind Hyg Assoc J; 1999; 60(4):495-501. PubMed ID: 10462783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermittent microclimate cooling during rest increases work capacity and reduces heat stress.
    Constable SH; Bishop PA; Nunneley SA; Chen T
    Ergonomics; 1994 Feb; 37(2):277-85. PubMed ID: 8119260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.