These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 836281)

  • 1. Taurocholate- and taurochenodeoxycholate-lecithin micelles: the equilibrium of bile salt between aqueous phase and micelle.
    Duane WC
    Biochem Biophys Res Commun; 1977 Jan; 74(1):223-9. PubMed ID: 836281
    [No Abstract]   [Full Text] [Related]  

  • 2. Equilibrium dialysis studies on aqueous taurocholate-lecithin solutions: further validation of the method.
    Higuchi WI; Liu CL; Adachi Y; Mazer NA; Lee PH
    Hepatology; 1990 Sep; 12(3 Pt 2):45S-49S; discussion 49S-50S. PubMed ID: 2210656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the release of cholesterol from taurocholate versus taurochenodeoxycholate micellar solutions.
    Chijiiwa K; Kiyosawa R; Fukudome K; Nakayama F
    Biochim Biophys Acta; 1988 Sep; 962(2):208-13. PubMed ID: 3167078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of taurocholate, taurochenodeoxycholate, and taurodehydrocholate on sulfobromophthalein transport into bile.
    Binet S; Delage Y; Erlinger S
    Am J Physiol; 1979 Jan; 236(1):E10-4. PubMed ID: 434145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the Sephadex G10 beads uptake method for determination of bile salt monomer concentration in taurocholate-lecithin solutions.
    Lee PH; Higuchi WI; Daabis NA; Noro S
    J Pharm Sci; 1985 Aug; 74(8):880-2. PubMed ID: 2411909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions.
    Long MA; Kaler EW; Lee SP
    Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal cholesterol uptake from mixed micelles. In vitro effects of taurocholate, taurochenodeoxycholate and tauroursodeoxycholate.
    Reynier MO; Montet JC; Crotte C; Marteau C; Gerolami A
    Biochim Biophys Acta; 1981 Jun; 664(3):616-9. PubMed ID: 7272324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct effects of three bile salts on cholesterol solubilization by oleate-monoolein-bile salt micelles.
    Montet JC; Reynier MO; Montet AM; Gerolami A
    Biochim Biophys Acta; 1979 Nov; 575(2):289-94. PubMed ID: 41588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of micelle formation on bile salt secretion.
    O'Máille ER
    J Physiol; 1980 May; 302():107-20. PubMed ID: 7411450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One- and two-dimensional NMR relaxation studies of dynamics and structure in bile salt-phosphatidylcholine mixed micelles.
    Stark RE; Storrs RW; Levine SE; Yee S; Broido MS
    Biochim Biophys Acta; 1986 Aug; 860(2):399-410. PubMed ID: 3741858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of bile-salt-stimulated human milk lipase in the presence of liposomes and mixed taurocholate-phosphatidylcholine micelles.
    Walde P; Sunamoto J; O'Connor CJ
    Biochim Biophys Acta; 1987 Nov; 905(1):39-47. PubMed ID: 3676313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimorphism in bile salt/lecithin mixed micelles.
    Claffey WJ; Holzbach RT
    Biochemistry; 1981 Jan; 20(2):415-8. PubMed ID: 7470490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid transfer between phosphatidylcholine-taurocholate mixed micelles.
    Nichols JW
    Biochemistry; 1988 May; 27(11):3925-31. PubMed ID: 3415964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of simple and mixed bile salt-lecithin micelles: an NMR self-diffusion study.
    Schurtenberger P; Lindman B
    Biochemistry; 1985 Dec; 24(25):7161-5. PubMed ID: 4084572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile.
    Duane WC
    Biochim Biophys Acta; 1975 Aug; 398(2):275-86. PubMed ID: 1182138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-existing colloidal phases in artificial intestinal fluids assessed by AF4/MALLS and DLS: A systematic study into cholate & (lyso-) phospholipid blends, incorporating celecoxib as a model drug.
    Elvang PA; Jacobsen AC; Bauer-Brandl A; Stein PC; Brandl M
    Eur J Pharm Sci; 2018 Jul; 120():61-72. PubMed ID: 29704643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion in bile and its implications on detergency.
    Sehlin RC; Cussler EL; Evans DF
    Biochim Biophys Acta; 1975 Jun; 388(3):385-96. PubMed ID: 1137718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.