These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 8363284)
1. Immunosuppressive effects of lymphocyte-specific histamine congener treatment of an adoptive transfer model. Garlie NK; Khosropour P; Melmon KL Ann N Y Acad Sci; 1993 Jun; 685():774-6. PubMed ID: 8363284 [No Abstract] [Full Text] [Related]
2. Suppression of natural xenophile antibodies with the novel immunomodulating drug leflunomide. Ulrichs K; Kaitschick J; Bartlett R; Müller-Ruchholtz W Transplant Proc; 1992 Apr; 24(2):718-9. PubMed ID: 1566498 [No Abstract] [Full Text] [Related]
3. [Influence of carnosine on the immunosuppressive effect of histamine]. Sharpan' IuV Biull Eksp Biol Med; 1984 Nov; 98(11):603-4. PubMed ID: 6509180 [TBL] [Abstract][Full Text] [Related]
4. Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy. Winter H; Hu HM; McClain K; Urba WJ; Fox BA J Immunol; 2001 Jun; 166(12):7370-80. PubMed ID: 11390488 [TBL] [Abstract][Full Text] [Related]
5. Site-selective homing of antigen-primed lymphocyte populations can play a crucial role in the efferent limb of cell-mediated immune responses in vivo. Spangrude GJ; Araneo BA; Daynes RA J Immunol; 1985 May; 134(5):2900-7. PubMed ID: 4038988 [TBL] [Abstract][Full Text] [Related]
6. Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination: creation of a beneficial host microenvironment involving type I IFNs and myeloid cells. Salem ML; Kadima AN; El-Naggar SA; Rubinstein MP; Chen Y; Gillanders WE; Cole DJ J Immunother; 2007 Jan; 30(1):40-53. PubMed ID: 17198082 [TBL] [Abstract][Full Text] [Related]
7. Immunosuppressive factor(s) from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). V. Inhibition of T cell proliferative responses. Araneo BA; Kapp JA J Immunol; 1980 Jul; 125(1):118-23. PubMed ID: 6991598 [No Abstract] [Full Text] [Related]
8. Adoptive immunotherapy with murine tumor-specific T lymphocytes engineered to secrete interleukin 2. Nakamura Y; Wakimoto H; Abe J; Kanegae Y; Saito I; Aoyagi M; Hirakawa K; Hamada H Cancer Res; 1994 Nov; 54(22):5757-60. PubMed ID: 7525049 [TBL] [Abstract][Full Text] [Related]
9. Pillars Article: The Kinetics of Emergence and Loss of Mediator T Lymphocytes Acquired in Response to Infection with Orme IM J Immunol; 2017 Aug; 199(3):833-838. PubMed ID: 28739593 [No Abstract] [Full Text] [Related]
10. 15-Deoxyspergualin, a novel immunosuppressive drug: studies of the mechanism of action. Tepper MA; Nadler S; Mazzucco C; Singh C; Kelley SL Ann N Y Acad Sci; 1993 Jun; 685():136-47. PubMed ID: 8363218 [No Abstract] [Full Text] [Related]
11. Tracking the elusive lymphocyte: methods of detection during adoptive immunotherapy. Skitzki JJ; Muhitch JB; Evans SS Immunol Invest; 2007; 36(5-6):807-27. PubMed ID: 18161530 [TBL] [Abstract][Full Text] [Related]
12. Renal cancer treatment with low levels of mixed chimerism induced by nonmyeloablative regimen using cyclophosphamide in mice. Harano M; Eto M; Iwai T; Tatsugami K; Kiyoshima K; Kamiryo Y; Tsuneyoshi M; Yoshikai Y; Naito S Cancer Res; 2005 Nov; 65(21):10032-40. PubMed ID: 16267029 [TBL] [Abstract][Full Text] [Related]
13. Suppressor cells induced by donor-specific transfusion and deoxyspergualin in cardiac xenografts from hamsters to rats. Valdivia LA; Wonden W; Gotoh M; Tono T; Nakano Y; Okamura J; Mori T Transplant Proc; 1991 Feb; 23(1 Pt 1):203-4. PubMed ID: 1824975 [No Abstract] [Full Text] [Related]
14. Immunosuppressive effect of stepronin (TS-5010680) in mice. de Giorgi L; Arrigoni-Martelli E; Matossian-Rogers A Transplant Proc; 1994 Dec; 26(6):3513-6. PubMed ID: 7998255 [No Abstract] [Full Text] [Related]
15. [Potential of prevention of metastasizing with the aid of tumor-specific transfer-factor]. Fil'chakov FV; Lën AD; Shumilina ES; Kukushkina SN; Shved VV; Grinevich IuA Vopr Onkol; 2011; 57(1):81-5. PubMed ID: 21598714 [TBL] [Abstract][Full Text] [Related]
16. Immunosuppressive effect of cyclosporin A in two lymphocyte transfer models in rats: comparison of in vivo and in vitro treatment. Ryffel B; Feurer C; Heuberger B; Borel JF Immunobiology; 1982 Dec; 163(5):470-83. PubMed ID: 6984418 [TBL] [Abstract][Full Text] [Related]
17. Peripheral tolerance specific for host minor histocompatibility antigens in acute GVHR-protected mice is associated with functional deletion of CD4+ but not CD8+ T cells and an active suppressive mechanism. Miconnet I; Bruley-Rosset M; Halle-Pannenko O Transplant Proc; 1993 Feb; 25(1 Pt 1):327-8. PubMed ID: 8438320 [No Abstract] [Full Text] [Related]
18. Regulative action of cyclic AMP and histamine on the immune response mediated by surface receptors of cells. Tomilets VA J Hyg Epidemiol Microbiol Immunol; 1981; 25(3):301-6. PubMed ID: 6117593 [TBL] [Abstract][Full Text] [Related]
19. Immunopharmacological properties of a protein-bound histamine metabolite. Sabolović D Int J Immunopharmacol; 1990; 12(6):647-55. PubMed ID: 2272727 [TBL] [Abstract][Full Text] [Related]
20. Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. Proietti E; Greco G; Garrone B; Baccarini S; Mauri C; Venditti M; Carlei D; Belardelli F J Clin Invest; 1998 Jan; 101(2):429-41. PubMed ID: 9435316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]