BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8363584)

  • 1. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells.
    Duchen MR; Smith PA; Ashcroft FM
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):35-42. PubMed ID: 8363584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons.
    Duchen MR
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):41-50. PubMed ID: 1373604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
    Düfer M; Krippeit-Drews P; Buntinas L; Siemen D; Drews G
    Biochem J; 2002 Dec; 368(Pt 3):817-25. PubMed ID: 12350226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets.
    Luciani DS; Misler S; Polonsky KS
    J Physiol; 2006 Apr; 572(Pt 2):379-92. PubMed ID: 16455690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct interference of HIV protease inhibitors with pancreatic beta-cell function.
    Düfer M; Neye Y; Krippeit-Drews P; Drews G
    Naunyn Schmiedebergs Arch Pharmacol; 2004 Jun; 369(6):583-90. PubMed ID: 15197535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity.
    Gregg T; Poudel C; Schmidt BA; Dhillon RS; Sdao SM; Truchan NA; Baar EL; Fernandez LA; Denu JM; Eliceiri KW; Rogers JD; Kimple ME; Lamming DW; Merrins MJ
    Diabetes; 2016 Sep; 65(9):2700-10. PubMed ID: 27284112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria present in excised patches from pancreatic B-cells may form microcompartments with ATP-dependent potassium channels.
    Rustenbeck I; Dickel C; Herrmann C; Grimmsmann T
    Biosci Rep; 1999 Apr; 19(2):89-98. PubMed ID: 10888471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice.
    Haspel D; Krippeit-Drews P; Aguilar-Bryan L; Bryan J; Drews G; Düfer M
    Diabetologia; 2005 May; 48(5):913-21. PubMed ID: 15830184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.
    Islam MS; Larsson O; Nilsson T; Berggren PO
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):679-86. PubMed ID: 7702559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence on NADH produced during glycolysis for beta-cell glucose signaling.
    Dukes ID; McIntyre MS; Mertz RJ; Philipson LH; Roe MW; Spencer B; Worley JF
    J Biol Chem; 1994 Apr; 269(15):10979-82. PubMed ID: 8157622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables.
    Magnus G; Keizer J
    Am J Physiol; 1998 Apr; 274(4):C1158-73. PubMed ID: 9575813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE
    Arch Biochem Biophys; 1987 Jan; 252(1):171-8. PubMed ID: 3813533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT).
    Civelek VN; Deeney JT; Kubik K; Schultz V; Tornheim K; Corkey BE
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):1015-9. PubMed ID: 8645138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of mitochondrial function affects cellular Ca2+ handling in pancreatic B-cells.
    Düfer M; Krippeit-Drews P; Drews G
    Pflugers Arch; 2002 May; 444(1-2):236-43. PubMed ID: 11976937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():33-61. PubMed ID: 1432712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells.
    Maechler P; Kennedy ED; Pozzan T; Wollheim CB
    EMBO J; 1997 Jul; 16(13):3833-41. PubMed ID: 9233793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetracaine stimulates insulin secretion from the pancreatic beta-cell by release of intracellular calcium.
    Mears D; Leighton X; Atwater I; Rojas E
    Cell Calcium; 1999 Jan; 25(1):59-68. PubMed ID: 10191960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells.
    Olofsson CS; Salehi A; Holm C; Rorsman P
    J Physiol; 2004 Jun; 557(Pt 3):935-48. PubMed ID: 15090611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription.
    Noda M; Yamashita S; Takahashi N; Eto K; Shen LM; Izumi K; Daniel S; Tsubamoto Y; Nemoto T; Iino M; Kasai H; Sharp GW; Kadowaki T
    J Biol Chem; 2002 Nov; 277(44):41817-26. PubMed ID: 12169697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.