These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8363601)

  • 21. Authentic temperature-regulation of a heat shock gene inserted into yeast on a high copy number vector. Influences of overexpression of HSP90 protein on high temperature growth and thermotolerance.
    Cheng L; Hirst K; Piper PW
    Biochim Biophys Acta; 1992 Aug; 1132(1):26-34. PubMed ID: 1511010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of heat-shock proteins and accumulation of trehalose by TPN in Saccharomyces cerevisiae.
    Fujita K; Iwahashi H; Kodama O; Komatsu Y
    Biochem Biophys Res Commun; 1995 Nov; 216(3):1041-7. PubMed ID: 7488177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose.
    Swan TM; Watson K
    Can J Microbiol; 1999 Jun; 45(6):472-9. PubMed ID: 10453475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis.
    Voit EO
    J Theor Biol; 2003 Jul; 223(1):55-78. PubMed ID: 12782117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast.
    Louvion JF; Warth R; Picard D
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13937-42. PubMed ID: 8943039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
    Truman AW; Millson SH; Nuttall JM; Mollapour M; Prodromou C; Piper PW
    Eukaryot Cell; 2007 Apr; 6(4):744-52. PubMed ID: 17293484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.
    Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M
    Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae.
    Piper PW
    FEMS Microbiol Rev; 1993 Aug; 11(4):339-55. PubMed ID: 8398211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response.
    Attfield PV
    FEBS Lett; 1987 Dec; 225(1-2):259-63. PubMed ID: 2446923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae.
    Lucero P; Peñalver E; Moreno E; Lagunas R
    Appl Environ Microbiol; 2000 Oct; 66(10):4456-61. PubMed ID: 11010898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose.
    Singer MA; Lindquist S
    Trends Biotechnol; 1998 Nov; 16(11):460-8. PubMed ID: 9830154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose.
    Swan TM; Watson K
    FEMS Microbiol Lett; 1998 Dec; 169(1):191-7. PubMed ID: 9851052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells.
    Saleh AA; Gune US; Chaudhary RK; Turakhiya AP; Roy I
    Biochim Biophys Acta; 2014 Apr; 1843(4):746-57. PubMed ID: 24412307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases.
    Nadeau K; Das A; Walsh CT
    J Biol Chem; 1993 Jan; 268(2):1479-87. PubMed ID: 8419347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermotolerant Yeast Kluyveromyces marxianus Reveals More Tolerance to Heat Shock than the Brewery Yeast Saccharomyces cerevisiae.
    Matsumoto I; Arai T; Nishimoto Y; Leelavatcharamas V; Furuta M; Kishida M
    Biocontrol Sci; 2018; 23(3):133-138. PubMed ID: 30249963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase.
    Panaretou B; Piper PW
    Eur J Biochem; 1992 Jun; 206(3):635-40. PubMed ID: 1535043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of Saccharomyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance.
    Attfield PV; Raman A; Northcott CJ
    FEMS Microbiol Lett; 1992 Jul; 73(3):271-6. PubMed ID: 1426991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.