These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 8363695)
1. Friction and lubrication in cushion form bearings for artificial hip joints. Auger DD; Dowson D; Fisher J; Jin ZM Proc Inst Mech Eng H; 1993; 207(1):25-33. PubMed ID: 8363695 [TBL] [Abstract][Full Text] [Related]
2. Cushion form bearings for total knee joint replacement. Part 1: Design,friction and lubrication. Auger DD; Dowson D; Fisher J Proc Inst Mech Eng H; 1995; 209(2):73-81. PubMed ID: 7495429 [TBL] [Abstract][Full Text] [Related]
3. Design considerations for cushion form bearings in artificial hip joints. Dowson D; Fisher J; Jin ZM; Auger DD; Jobbins B Proc Inst Mech Eng H; 1991; 205(2):59-68. PubMed ID: 1840721 [TBL] [Abstract][Full Text] [Related]
4. Cushion form bearings for total knee joint replacement. Part 2: Wear and durability. Auger DD; Dowson D; Fisher J Proc Inst Mech Eng H; 1995; 209(2):83-91. PubMed ID: 7495430 [TBL] [Abstract][Full Text] [Related]
5. Determination of contact area in 'cushion form' bearings for artificial hip joints. O'Carroll S; Jin ZM; Dowson D; Fisher J; Jobbins B Proc Inst Mech Eng H; 1990; 204(4):217-23. PubMed ID: 2090124 [TBL] [Abstract][Full Text] [Related]
6. Friction of composite cushion bearings for total knee joint replacements under adverse lubrication conditions. Stewart T; Jin ZM; Fisher J Proc Inst Mech Eng H; 1997; 211(6):451-65. PubMed ID: 9509883 [TBL] [Abstract][Full Text] [Related]
7. A 3D-transient elastohydrodynamic lubrication hip implant model to compare ultra high molecular weight polyethylene with more compliant polycarbonate polyurethane acetabular cups. Ford A; Hua Z; Ferguson SJ; Pruitt LA; Gao L J Mech Behav Biomed Mater; 2021 Jul; 119():104472. PubMed ID: 33813334 [TBL] [Abstract][Full Text] [Related]
8. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation. Wang FC; Liu F; Jin ZM Proc Inst Mech Eng H; 2004; 218(5):283-91. PubMed ID: 15532994 [TBL] [Abstract][Full Text] [Related]
9. Compliant layer bearings in artificial joints. Part 2: simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate. Jones E; Scholes SC; Burgess IC; Ash HE; Unsworth A Proc Inst Mech Eng H; 2009 Jan; 223(1):1-12. PubMed ID: 19239063 [TBL] [Abstract][Full Text] [Related]
10. Comparison of friction and lubrication of different hip prostheses. Scholes SC; Unsworth A Proc Inst Mech Eng H; 2000; 214(1):49-57. PubMed ID: 10718050 [TBL] [Abstract][Full Text] [Related]
11. Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint. Scholes SC; Burgess IC; Marsden HR; Unsworth A; Jones E; Smith N Proc Inst Mech Eng H; 2006 Jul; 220(5):583-96. PubMed ID: 16898216 [TBL] [Abstract][Full Text] [Related]
12. Effect of swing phase load on metal-on-metal hip lubrication, friction and wear. Williams S; Jalali-Vahid D; Brockett C; Jin Z; Stone MH; Ingham E; Fisher J J Biomech; 2006; 39(12):2274-81. PubMed ID: 16143337 [TBL] [Abstract][Full Text] [Related]
13. Prediction of lubricating film thickness in UHMWPE hip joint replacements. Jalali-Vahid D; Jagatia M; Jin ZM; Dowson D J Biomech; 2001 Feb; 34(2):261-6. PubMed ID: 11165292 [TBL] [Abstract][Full Text] [Related]
14. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing. Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728 [TBL] [Abstract][Full Text] [Related]
15. Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady state entraining motion. Jagatia M; Jin ZM Proc Inst Mech Eng H; 2001; 215(6):531-41. PubMed ID: 11848385 [TBL] [Abstract][Full Text] [Related]
16. The impact of surface and geometry on coefficient of friction of artificial hip joints. Choudhury D; Vrbka M; Mamat AB; Stavness I; Roy CK; Mootanah R; Krupka I J Mech Behav Biomed Mater; 2017 Aug; 72():192-199. PubMed ID: 28500998 [TBL] [Abstract][Full Text] [Related]
17. Elastohydrodynamic lubrication analysis of ultra-high molecular weight polyethylene hip joint replacements under squeeze-film motion. Jagatia M; Jalali-Vahid D; Jin ZM Proc Inst Mech Eng H; 2001; 215(2):141-52. PubMed ID: 11382073 [TBL] [Abstract][Full Text] [Related]
18. Stress analysis of cushion form bearings for total hip replacements. Jin ZM; Dowson D; Fisher J Proc Inst Mech Eng H; 1991; 205(4):219-26. PubMed ID: 1670079 [TBL] [Abstract][Full Text] [Related]
19. Importance of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses. Liu F; Jin Z; Roberts P; Grigoris P Proc Inst Mech Eng H; 2006 Aug; 220(6):695-704. PubMed ID: 16961189 [TBL] [Abstract][Full Text] [Related]
20. Determination of lubricating film thickness for permeable hydrogel and non-permeable polyurethane layers bonded to a rigid substrate with particular reference to cushion form hip joint replacements. McClure G; Jin ZM; Fisher J; Tighe BJ Proc Inst Mech Eng H; 1996; 210(2):89-93. PubMed ID: 8688121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]