These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8364064)

  • 1. [The effect of fixed water molecules on fractal properties of globular protein surfaces].
    Fedorov BB; Fedorov BA
    Biofizika; 1993; 38(4):611-8. PubMed ID: 8364064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV; Totrov M; Abagyan R; Breslauer KJ
    J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How thick is the layer of thermal volume surrounding the protein?
    Bánó M; Marek J
    Biophys Chem; 2006 Mar; 120(1):44-54. PubMed ID: 16242836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of fractal properties of globular protein surfaces by means of small-angle x-ray scattering].
    Fedorov BA; Shmidt PU
    Biofizika; 1991; 36(5):749-53. PubMed ID: 1799589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability distributions of hydration water molecules around polar protein atoms obtained by a database analysis.
    Matsuoka D; Nakasako M
    J Phys Chem B; 2009 Aug; 113(32):11274-92. PubMed ID: 19621908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes.
    Lu Y; Wang R; Yang CY; Wang S
    J Chem Inf Model; 2007; 47(2):668-75. PubMed ID: 17266298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roughness of the globular protein surface: analysis of high resolution X-ray data.
    Timchenko AA; Galzitskaya OV; Serdyuk IN
    Proteins; 1997 Jun; 28(2):194-201. PubMed ID: 9188737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the protein-water interface.
    Makarov VA; Andrews BK; Pettitt BM
    Biopolymers; 1998 Jun; 45(7):469-78. PubMed ID: 9577228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water structure and interactions with protein surfaces.
    Raschke TM
    Curr Opin Struct Biol; 2006 Apr; 16(2):152-9. PubMed ID: 16546375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR.
    Malmström J; Agheli H; Kingshott P; Sutherland DS
    Langmuir; 2007 Sep; 23(19):9760-8. PubMed ID: 17691829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular simulation study of methylated and hydroxyl sugar-based self-assembled monolayers: Surface hydration and resistance to protein adsorption.
    Hower JC; He Y; Jiang S
    J Chem Phys; 2008 Dec; 129(21):215101. PubMed ID: 19063581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties.
    Fang W; Mayama H; Tsujii K
    J Phys Chem B; 2007 Jan; 111(3):564-71. PubMed ID: 17228914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical aspects of the weakly hydrated protein surface.
    Careri G; Peyrard M
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):745-56. PubMed ID: 11728090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of hydration shells of protein molecules at their pressure- and temperature-induced native-denatured transition.
    Danielewicz-Ferchmin I; Banachowicz EM; Ferchmin AR
    Chemphyschem; 2006 Oct; 7(10):2126-33. PubMed ID: 16955512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers.
    Hower JC; He Y; Bernards MT; Jiang S
    J Chem Phys; 2006 Dec; 125(21):214704. PubMed ID: 17166037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of interfacial water on fluorapatite (100) surface.
    Pareek A; Torrelles X; Angermund K; Rius J; Magdans U; Gies H
    Langmuir; 2008 Mar; 24(6):2459-64. PubMed ID: 18278952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.