These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 8364071)

  • 21. Conformational study of methylphosphocholine: a prototype for phospholipid headgroups in membranes.
    Soares CS; da Silva CO
    J Mol Graph Model; 2010 Aug; 29(1):82-92. PubMed ID: 20627784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements.
    Fernandes Fraceto L; Spisni A; Schreier S; de Paula E
    Biophys Chem; 2005 May; 115(1):11-8. PubMed ID: 15848279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulation of hydrated phospholipid bilayers.
    Kothekar V
    Indian J Biochem Biophys; 1996 Dec; 33(6):431-47. PubMed ID: 9219427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the dynamic properties of the transmembrane segment of phospholamban incorporated into phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy.
    Tiburu EK; Karp ES; Dave PC; Damodaran K; Lorigan GA
    Biochemistry; 2004 Nov; 43(44):13899-909. PubMed ID: 15518538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic contributions to indole-lipid interactions.
    Gaede HC; Yau WM; Gawrisch K
    J Phys Chem B; 2005 Jul; 109(26):13014-23. PubMed ID: 16852615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydration and lateral organization in phospholipid bilayers containing sphingomyelin: a 2H-NMR study.
    Steinbauer B; Mehnert T; Beyer K
    Biophys J; 2003 Aug; 85(2):1013-24. PubMed ID: 12885648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis.
    Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F
    Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of bilayer and hexagonal H(II) phase lipid films on transepidermal water loss.
    Raney SG; Hope MJ
    Exp Dermatol; 2006 Jul; 15(7):493-500. PubMed ID: 16761957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular simulation study of the influence of small molecules on the dynamic and structural properties of phospholipid bilayers.
    Sum AK
    Chem Biodivers; 2005 Nov; 2(11):1503-16. PubMed ID: 17191950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroelectrochemical studies of bilayers of phospholipids in gel and liquid state on Au(111) electrode surface.
    Zawisza I; Bin X; Lipkowski J
    Bioelectrochemistry; 2004 Jun; 63(1-2):137-47. PubMed ID: 15110264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy.
    Pointer-Keenan CD; Lee DK; Hallok K; Tan A; Zand R; Ramamoorthy A
    Chem Phys Lipids; 2004 Nov; 132(1):47-54. PubMed ID: 15530447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lanthanide chelates as bilayer alignment tools in NMR studies of membrane-associated peptides.
    Prosser RS; Bryant H; Bryant RG; Vold RR
    J Magn Reson; 1999 Dec; 141(2):256-60. PubMed ID: 10579948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.
    Gaede HC; Luckett KM; Polozov IV; Gawrisch K
    Langmuir; 2004 Aug; 20(18):7711-9. PubMed ID: 15323523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays.
    Lorigan GA; Dave PC; Tiburu EK; Damodaran K; Abu-Baker S; Karp ES; Gibbons WJ; Minto RE
    J Am Chem Soc; 2004 Aug; 126(31):9504-5. PubMed ID: 15291530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of pathological membranes with nuclear magnetic resonance spectroscopy.
    Brown CE
    Biomembranes; 1983; 11():439-62. PubMed ID: 6830945
    [No Abstract]   [Full Text] [Related]  

  • 38. Photoactivatable phospholipids bearing tetrafluorophenylazido chromophores exhibit unprecedented protonation-state-dependent 19F NMR signals.
    Xia Y; Qu F; Maggiani A; Sengupta K; Liu C; Peng L
    Org Lett; 2011 Aug; 13(16):4248-51. PubMed ID: 21766799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR of carbohydrates at the surface of cells.
    Jarrell HC; Smith IC
    Basic Life Sci; 1990; 56():303-16. PubMed ID: 2078176
    [No Abstract]   [Full Text] [Related]  

  • 40. Phosphorus-31 nuclear magnetic resonance in membrane fusion studies.
    Yeagle PL
    Methods Enzymol; 1993; 220():68-79. PubMed ID: 8350764
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.