These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 8364072)

  • 1. [The effect of nonequibrilium states of membrane-area electrolyte during dilution of cell suspensions].
    Balmukhanov BS; Basenova AT
    Biofizika; 1993; 38(4):693-8. PubMed ID: 8364072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Erythrocyte sedimentation rate in diluted suspensions and their electrophoretic mobility in a vertical electrical field].
    Balmukhanov BS; Basenova AT; Bulegenov KE
    Biofizika; 1989; 34(3):468-72. PubMed ID: 2765572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of chlorine diffusion potential on electrophoretic mobility and erythrocyte sedimentation in diluted suspensions].
    Balmukhanov B; Basenova A
    Biofizika; 1994; 39(4):686-90. PubMed ID: 7981276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced erythrocyte adhesiveness/aggregation in obesity corresponds to low-grade inflammation.
    Samocha-Bonet D; Lichtenberg D; Tomer A; Deutsch V; Mardi T; Goldin Y; Abu-Abeid S; Shenkerman G; Patshornik H; Shapira I; Berliner S
    Obes Res; 2003 Mar; 11(3):403-7. PubMed ID: 12634437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity.
    Janzen J; Elliott TG; Carter CJ; Brooks DE
    Biorheology; 2000; 37(3):225-37. PubMed ID: 11026942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
    Iglic A; Lokar M; Babnik B; Slivnik T; Veranic P; Hägerstrand H; Kralj-Iglic V
    Blood Cells Mol Dis; 2007; 39(1):14-23. PubMed ID: 17475520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation.
    Yalcin O; Meiselman HJ; Armstrong JK; Baskurt OK
    Biorheology; 2005; 42(6):511-20. PubMed ID: 16369087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes.
    Das B; Johnson PC; Popel AS
    Biorheology; 1998; 35(1):69-87. PubMed ID: 10211130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation and sedimentation of mixtures of erythrocytes with different properties.
    Suzuki Y; Tateishi N; Cicha I; Maeda N
    Clin Hemorheol Microcirc; 2001; 25(3-4):105-17. PubMed ID: 11847413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation of erythrocytes and aggregates during sedimentation under microgravity.
    Singh M; Middelberg J; Rath HJ
    Microgravity Sci Technol; 1995 Dec; 8(4):256-60. PubMed ID: 11541848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of dispersions of colloidal alumina particles in aqueous suspensions.
    Singh BP; Menchavez R; Takai C; Fuji M; Takahashi M
    J Colloid Interface Sci; 2005 Nov; 291(1):181-6. PubMed ID: 15964586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers.
    Wu J; Li Y; Lu D; Liu Z; Cheng Z; He L
    Cryo Letters; 2009; 30(2):89-95. PubMed ID: 19448857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of phosphatidylserine distribution in human red blood cells during the process of loading sugars.
    Quan GB; Liu MX; Ren SP; Zhang JG; Han Y
    Cryobiology; 2006 Aug; 53(1):107-18. PubMed ID: 16762335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.