These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8364503)

  • 21. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding.
    Wyszynski MW; Gabbara S; Kubareva EA; Romanova EA; Oretskaya TS; Gromova ES; Shabarova ZA; Bhagwat AS
    Nucleic Acids Res; 1993 Jan; 21(2):295-301. PubMed ID: 8441637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro methylation of DNA with Hpa II methylase.
    Quint A; Cedar H
    Nucleic Acids Res; 1981 Feb; 9(3):633-46. PubMed ID: 7220347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene.
    Sohail A; Lieb M; Dar M; Bhagwat AS
    J Bacteriol; 1990 Aug; 172(8):4214-21. PubMed ID: 2198248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorothioation of oligonucleotides strongly influences the inhibition of bacterial (M.HhaI) and human (Dnmt1) DNA methyltransferases.
    Warncke S; Gégout A; Carell T
    Chembiochem; 2009 Mar; 10(4):728-34. PubMed ID: 19222038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of HhaI methylation on DNA local structure.
    Fox KR
    Biochem J; 1986 Feb; 234(1):213-6. PubMed ID: 3707542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the recognition mechanism of DNA cytosine-5 methyltransferases (DNMTs) by incorporation of acyclic 5-fluorocytosine (
    Utsumi S; Sato K; Ichikawa S
    Bioorg Med Chem Lett; 2018 Jul; 28(12):2189-2194. PubMed ID: 29752184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism-Based Inhibitor of DNA Cytosine-5 Methyltransferase by a S
    Sato K; Kunitomo Y; Kasai Y; Utsumi S; Suetake I; Tajima S; Ichikawa S; Matsuda A
    Chembiochem; 2018 Apr; 19(8):865-872. PubMed ID: 29392812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases.
    Klimasauskas S; Timinskas A; Menkevicius S; Butkienè D; Butkus V; Janulaitis A
    Nucleic Acids Res; 1989 Dec; 17(23):9823-32. PubMed ID: 2690010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of restriction-modification enzymes Cfr13 I from Citrobacter freundii RFL13.
    Bitinaité JB; Klimasauskas SJ; Butkus VV; Janulaitis AA
    FEBS Lett; 1985 Mar; 182(2):509-13. PubMed ID: 2984047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic impact of methylation at the M. Hhai target site: a solid-state deuterium NMR study.
    Meints GA; Drobny GP
    Biochemistry; 2001 Oct; 40(41):12436-43. PubMed ID: 11591165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F; Lurz R; Weinhold E
    Molecules; 2015 Nov; 20(11):20805-22. PubMed ID: 26610450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sequence specificity domain of cytosine-C5 methylases.
    Klimasauskas S; Nelson JL; Roberts RJ
    Nucleic Acids Res; 1991 Nov; 19(22):6183-90. PubMed ID: 1659688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of the HpaII methylase gene.
    Card CO; Wilson GG; Weule K; Hasapes J; Kiss A; Roberts RJ
    Nucleic Acids Res; 1990 Mar; 18(6):1377-83. PubMed ID: 2183189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alterations in DNA helix stability due to base modifications can be evaluated using denaturing gradient gel electrophoresis.
    Collins M; Myers RM
    J Mol Biol; 1987 Dec; 198(4):737-44. PubMed ID: 3430628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. M.HhaI binds tightly to substrates containing mismatches at the target base.
    Klimasauskas S; Roberts RJ
    Nucleic Acids Res; 1995 Apr; 23(8):1388-95. PubMed ID: 7753630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.
    Huang N; Banavali NK; MacKerell AD
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):68-73. PubMed ID: 12506195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of (cytosine C5)-methyltransferase by oligonucleotides containing flexible (cyclopentane) and conformationally constrained (bicyclo[3.1.0]hexane) abasic sites.
    Marquez VE; Wang P; Nicklaus MC; Maier M; Manoharan M; Christman JK; Banavali NK; Mackerell AD
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):451-9. PubMed ID: 11563060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and characterization of the genes encoding the MspI restriction modification system.
    Lin PM; Lee CH; Roberts RJ
    Nucleic Acids Res; 1989 Apr; 17(8):3001-11. PubMed ID: 2471145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of biochemical properties of DNA methyltransferase FauIA modifying the second cytosine in the nonpalindromic sequence 5'-CCCGC-3'.
    Chernukhin VA; Kashirina YG; Sukhanova KS; Abdurashitov MA; Gonchar DA; Degtyarev SKh
    Biochemistry (Mosc); 2005 Jun; 70(6):685-91. PubMed ID: 16038611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of DNA methylase activity by acrolein.
    Cox R; Goorha S; Irving CC
    Carcinogenesis; 1988 Mar; 9(3):463-5. PubMed ID: 3345585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.