These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8364606)

  • 1. A series of vectors that simplify mammalian gene targeting.
    Brookes AJ; Stevenson BJ; Porteous DJ; Dorin JR
    Transgenic Res; 1993 Jul; 2(4):238-44. PubMed ID: 8364606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene knock-outs and allelic replacements in Toxoplasma gondii: HXGPRT as a selectable marker for hit-and-run mutagenesis.
    Donald RG; Roos DS
    Mol Biochem Parasitol; 1998 Mar; 91(2):295-305. PubMed ID: 9566522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells.
    Aratani Y; Okazaki R; Koyama H
    Nucleic Acids Res; 1992 Sep; 20(18):4795-801. PubMed ID: 1408793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of crossovers during gene targeting with insertion and replacement vectors.
    Deng C; Thomas KR; Capecchi MR
    Mol Cell Biol; 1993 Apr; 13(4):2134-40. PubMed ID: 8455602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.
    Rubinstein M; Japón MA; Low MJ
    Nucleic Acids Res; 1993 Jun; 21(11):2613-7. PubMed ID: 8392702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the G(i2) alpha locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair.
    Rudolph U; Brabet P; Hasty P; Bradley A; Birnbaumer L
    Transgenic Res; 1993 Nov; 2(6):345-55. PubMed ID: 8268981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene targeting at the chromosomal immunoglobulin locus: a model system for the study of mammalian homologous recombination mechanisms.
    Baker MD
    Methods Mol Biol; 2004; 262():143-55. PubMed ID: 14769960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Homologous recombination and gene targeting].
    Biet E; Larue L; Dutreix M
    C R Biol; 2003 Jan; 326(1):51-64. PubMed ID: 12741182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low level of Hox1.3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. off.
    Jeannotte L; Ruiz JC; Robertson EJ
    Mol Cell Biol; 1991 Nov; 11(11):5578-85. PubMed ID: 1717831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes.
    Liu Q; Li MZ; Leibham D; Cortez D; Elledge SJ
    Curr Biol; 1998 Dec; 8(24):1300-9. PubMed ID: 9843682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of recombination frequencies between two homologous DNA segments embedded in a YAC vector.
    Yasui H; Kurosawa Y
    Gene; 1993 Jul; 129(1):135-9. PubMed ID: 8335252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced selection for homologous-recombinant embryonic stem cell clones with a neomycin phosphotransferase gene in antisense orientation.
    Skryabin BV; Schmauss C
    Transgenic Res; 1997 Jan; 6(1):27-35. PubMed ID: 9032975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of microhomologous recombination in yeast to generate targeting constructs for mammalian genes.
    Khrebtukova I; Michaud EJ; Foster CM; Stark KL; Garfinkel DJ; Woychik RP
    Mutat Res; 1998 Jun; 401(1-2):11-25. PubMed ID: 9639665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M13 and pUC vectors with new unique restriction sites for cloning.
    Benes V; Hostomský Z; Arnold L; Paces V
    Gene; 1993 Aug; 130(1):151-2. PubMed ID: 8393824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of the Gi2 alpha gene in ES cells with replacement and insertion vectors.
    Rudolph U; Brabet P; Kaplan J; Hasty P; Bradley A; Birnbaumer L
    J Recept Res; 1993; 13(1-4):619-37. PubMed ID: 8450507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes.
    Schmeisser F; Weir JP
    BMC Biotechnol; 2007 May; 7():22. PubMed ID: 17501993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors.
    Ng P; Parks RJ; Cummings DT; Evelegh CM; Sankar U; Graham FL
    Hum Gene Ther; 1999 Nov; 10(16):2667-72. PubMed ID: 10566894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of two identical independent non-homologous integration sites in mouse embryonic stem cells.
    Sutherland HF; Lovell-Badge RH; Jackson IJ
    Gene; 1993 Sep; 131(2):265-8. PubMed ID: 8406021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a new universal vector for insertional mutagenesis by homologous recombination.
    Chauhan SS; Gottesman MM
    Gene; 1992 Oct; 120(2):281-5. PubMed ID: 1327975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient modification of the APRT gene by FLP/FRT site-specific targeting.
    Merrihew RV; Sargent RG; Wilson JH
    Somat Cell Mol Genet; 1995 Sep; 21(5):299-307. PubMed ID: 8619127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.