These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8364717)

  • 1. A prey-type dependent hypoglossal feedback system in the frog Rana pipiens.
    Anderson CW; Nishikawa KC
    Brain Behav Evol; 1993; 42(3):189-96. PubMed ID: 8364717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of neural circuits controlling feeding behavior in frogs.
    Nishikawa KC; Anderson CW; Deban SM; O'Reilly JC
    Brain Behav Evol; 1992; 40(2-3):125-40. PubMed ID: 1422806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hypoglossal sensory feedback during feeding in the marine toad, Bufo marinus.
    Nishikawa KC; Gans C
    J Exp Zool; 1992 Dec; 264(3):245-52. PubMed ID: 1431785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional anatomy and evolution of hypoglossal afferents in the leopard frog, Rana pipiens.
    Anderson CW; Nishikawa KC
    Brain Res; 1997 Oct; 771(2):285-91. PubMed ID: 9401749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of visual and proprioceptive information during motor program choice in frogs.
    Anderson CW; Nishikawa KC
    J Comp Physiol A; 1996 Dec; 179(6):753-62. PubMed ID: 8956496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the submentalis muscle to feeding mechanics in the leopard frog, Rana pipiens.
    Wolff JB; Lee MJ; Anderson CW
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):666-73. PubMed ID: 15286946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.
    Anderson CW
    Exp Brain Res; 2001 Sep; 140(1):12-9. PubMed ID: 11500793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular control of prey capture in frogs.
    Nishikawa KC
    Philos Trans R Soc Lond B Biol Sci; 1999 May; 354(1385):941-54. PubMed ID: 10382226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinematics and mechanism of prey capture in the African pig-nosed frog (Hemisus marmoratum): description of a radically divergent anuran tongue.
    Ritter D; Nishikawa K
    J Exp Biol; 1995 Sep; 198(Pt 9):2025-40. PubMed ID: 7595163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the anatomical origins of hypoglossal afferents in the tongue of the leopard frog, Rana pipiens.
    Harwood DV; Anderson CW
    Brain Res; 2000 Apr; 862(1-2):288-91. PubMed ID: 10799702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S; Matesz C; Gaál B; Birinyi A
    Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature effects on the biomechanics of prey capture in the frog Rana pipiens.
    Sandusky PE; Deban SM
    J Exp Zool A Ecol Genet Physiol; 2012 Dec; 317(10):595-607. PubMed ID: 22952141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent and efferent components of the hypoglossal nerve in the grass frog, Rana pipiens.
    Stuesse SL; Cruce WL; Powell KS
    J Comp Neurol; 1983 Jul; 217(4):432-9. PubMed ID: 6604074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prey location, biomechanical constraints, and motor program choice during prey capture in the tomato frog, Dyscophus guineti.
    Monroy JA; Nishikawa KC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Sep; 195(9):843-52. PubMed ID: 19657661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glossopharyngeal-hypoglossal nerve reflex of the frog in metamorphosis.
    Hirakawa T; Honda E; Toyoshima K; Tomo S; Nakahara S
    Arch Oral Biol; 1993 Feb; 38(2):123-9. PubMed ID: 8476341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E; Bácskai T; Szabo G; Székely G; Matesz C
    Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of eye retraction to swallowing performance in the northern leopard frog, Rana pipiens.
    Levine RP; Monroy JA; Brainerd EL
    J Exp Biol; 2004 Mar; 207(Pt 8):1361-8. PubMed ID: 15010487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musculotopic organization of the hypoglossal nucleus in the grass frog, Rana pipiens.
    Sokoloff AJ
    J Comp Neurol; 1991 Jun; 308(4):505-12. PubMed ID: 1865014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brainstem circuits underlying the prey-catching behavior of the frog.
    Matesz K; Kecskes S; Bácskai T; Rácz É; Birinyi A
    Brain Behav Evol; 2014; 83(2):104-11. PubMed ID: 24776991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanics of prey prehension in chameleons.
    Herrel A; Meyers JJ; Aerts P; Nishikawa KC
    J Exp Biol; 2000 Nov; 203(Pt 21):3255-63. PubMed ID: 11023845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.