BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8365409)

  • 1. The role of the proton-pumping and alternative respiratory chain NADH:ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger.
    Prömper C; Schneider R; Weiss H
    Eur J Biochem; 1993 Aug; 216(1):223-30. PubMed ID: 8365409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proton-pumping NADH:ubiquinone oxidoreductase (complex I) of Aquifex aeolicus.
    Scheide D; Huber R; Friedrich T
    FEBS Lett; 2002 Feb; 512(1-3):80-4. PubMed ID: 11852056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex.
    Schulte U; Haupt V; Abelmann A; Fecke W; Brors B; Rasmussen T; Friedrich T; Weiss H
    J Mol Biol; 1999 Sep; 292(3):569-80. PubMed ID: 10497022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production.
    Hou L; Liu L; Zhang H; Zhang L; Zhang L; Zhang J; Gao Q; Wang D
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7981-7995. PubMed ID: 30006782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The respiratory complex I in yeast: isolation of a gene NUO51 coding for the nucleotide-binding subunit of NADH:ubiquinone oxidoreductase from the obligately aerobic yeast Yarrowia lipolytica.
    Rycovská A; Szabo R; Tomáska L; Nosek J
    Folia Microbiol (Praha); 2000; 45(5):429-33. PubMed ID: 11357863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection.
    Bertsova YV; Bogachev AV; Skulachev VP
    Biochim Biophys Acta; 1998 Feb; 1363(2):125-33. PubMed ID: 9507087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria.
    Videir A; Duarte M
    J Bioenerg Biomembr; 2001 Jun; 33(3):197-203. PubMed ID: 11695829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli.
    Narayanan M; Sakyiama JA; Elguindy MM; Nakamaru-Ogiso E
    J Biochem; 2016 Oct; 160(4):205-215. PubMed ID: 27118783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement for the proton-pumping NADH dehydrogenase I of Escherichia coli in respiration of NADH to fumarate and its bioenergetic implications.
    Tran QH; Bongaerts J; Vlad D; Unden G
    Eur J Biochem; 1997 Feb; 244(1):155-60. PubMed ID: 9063459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From NADH to ubiquinone in Neurospora mitochondria.
    Videira A; Duarte M
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):187-91. PubMed ID: 12206913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The internal alternative NADH dehydrogenase of Neurospora crassa mitochondria.
    Duarte M; Peters M; Schulte U; Videira A
    Biochem J; 2003 May; 371(Pt 3):1005-11. PubMed ID: 12556227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism?
    Brandt U; Kerscher S; Dröse S; Zwicker K; Zickermann V
    FEBS Lett; 2003 Jun; 545(1):9-17. PubMed ID: 12788486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and origin of alternative NADH:ubiquinone oxidoreductases.
    Kerscher SJ
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):274-83. PubMed ID: 11004440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three families of respiratory NADH dehydrogenases.
    Kerscher S; Dröse S; Zickermann V; Brandt U
    Results Probl Cell Differ; 2008; 45():185-222. PubMed ID: 17514372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.