These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8365950)

  • 1. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids.
    Ostling CE; Lindgren SE
    J Appl Bacteriol; 1993 Jul; 75(1):18-24. PubMed ID: 8365950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese.
    Wemmenhove E; van Valenberg HJ; Zwietering MH; van Hooijdonk TC; Wells-Bennik MH
    Food Microbiol; 2016 Sep; 58():63-7. PubMed ID: 27217360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH.
    Young KM; Foegeding PM
    J Appl Bacteriol; 1993 May; 74(5):515-20. PubMed ID: 8486558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.
    el-Ziney MG; De Meyer H; Debevere JM
    Int J Food Microbiol; 1997 Mar; 34(3):233-47. PubMed ID: 9039569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling growth rates of Listeria innocua as a function of lactate concentration.
    Houtsma PC; Kusters BJ; de Wit JC; Rombouts FM; Zwietering MH
    Int J Food Microbiol; 1994 Dec; 24(1-2):113-23. PubMed ID: 7703006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.
    Canibe N; Miquel N; Miettinen H; Jensen BB
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):431-4. PubMed ID: 15954629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of pH, temperature and organic acids on the initiation of growth of Yersinia enterocolitica.
    Brocklehurst TF; Lund BM
    J Appl Bacteriol; 1990 Sep; 69(3):390-7. PubMed ID: 2246144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of colon flora and short-chain fatty acids on growth in vitro of Pseudomonas aeruginsoa and Enterobacteriaceae.
    Levison ME
    Infect Immun; 1973 Jul; 8(1):30-5. PubMed ID: 4198102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological studies on the growth and utilization of sugars by Listeria species.
    Pine L; Malcolm GB; Brooks JB; Daneshvar MI
    Can J Microbiol; 1989 Feb; 35(2):245-54. PubMed ID: 2501014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different acidulants on growth of 'Streptococcus milleri group' strains isolated from various sites of the human body.
    Osawa R; Whiley RA
    Lett Appl Microbiol; 1995 May; 20(5):263-7. PubMed ID: 7766224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of temperature and organic matter on the bactericidal activity of short-chain organic acids on salmonellas.
    Cherrington CA; Allen V; Hinton M
    J Appl Bacteriol; 1992 Jun; 72(6):500-3. PubMed ID: 1644707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria.
    Midolo PD; Lambert JR; Hull R; Luo F; Grayson ML
    J Appl Bacteriol; 1995 Oct; 79(4):475-9. PubMed ID: 7592140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the influence of single acid and mixture on bacterial growth.
    Coroller L; Guerrot V; Huchet V; Le Marc Y; Mafart P; Sohier D; Thuault D
    Int J Food Microbiol; 2005 Apr; 100(1-3):167-78. PubMed ID: 15854702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological state of single cells of Listeria innocua in organic acids.
    George SM; Metris A; Stringer SC
    Int J Food Microbiol; 2008 May; 124(2):204-10. PubMed ID: 18456356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of acid production in Streptococcus mutans R9: inhibition constants and reversibility.
    Assinder SJ; Eynstone LV; Shellis RP; Dibdin GH
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):287-92. PubMed ID: 8586281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of acid production in Streptococcus mutans R9 by formic acid.
    Assinder SJ; Popiel HA
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):229-33. PubMed ID: 8837476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanded models for the non-thermal inactivation of Listeria monocytogenes.
    Buchanan RL; Golden MH; Phillips JG
    J Appl Microbiol; 1997 May; 82(5):567-77. PubMed ID: 9172398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.
    Morita T; Takeda K; Okumura K
    Mutat Res; 1990 Mar; 240(3):195-202. PubMed ID: 2314411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.