BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8366076)

  • 1. Critical minimum length of the central helix in troponin C for the Ca2+ switch in muscular contraction.
    Babu A; Rao VG; Su H; Gulati J
    J Biol Chem; 1993 Sep; 268(26):19232-8. PubMed ID: 8366076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I.
    Farah CS; Miyamoto CA; Ramos CH; da Silva AC; Quaggio RB; Fujimori K; Smillie LB; Reinach FC
    J Biol Chem; 1994 Feb; 269(7):5230-40. PubMed ID: 8106506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the structural requirements of the troponin C central helix for function.
    Ramakrishnan S; Hitchcock-DeGregori SE
    Biochemistry; 1995 Dec; 34(51):16789-96. PubMed ID: 8527454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the regions conferring calmodulin-like properties to troponin C.
    Gulati J; Babu A; Su H; Zhang YF
    J Biol Chem; 1993 Jun; 268(16):11685-90. PubMed ID: 8389360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional delineation of the Ca(2+)-deficient EF-hand in cardiac muscle, with genetically engineered cardiac-skeletal chimeric troponin C.
    Gulati J; Babu A; Su H
    J Biol Chem; 1992 Dec; 267(35):25073-7. PubMed ID: 1460008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, expression, and mutation of a rabbit skeletal muscle cDNA clone for troponin I. The role of the NH2 terminus of fast skeletal muscle troponin I in its biological activity.
    Sheng Z; Pan BS; Miller TE; Potter JD
    J Biol Chem; 1992 Dec; 267(35):25407-13. PubMed ID: 1339446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glycine (residue 89) in the central helix of EF-hand protein troponin-C exposed following amino-terminal alpha-helix deletion.
    Ding XL; Akella AB; Su H; Gulati J
    Protein Sci; 1994 Nov; 3(11):2089-96. PubMed ID: 7703855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of the N-terminal calcium-binding sites in cardiac/slow troponin C assessed in fast skeletal muscle fibers.
    Putkey JA; Liu W; Sweeney HL
    J Biol Chem; 1991 Aug; 266(23):14881-4. PubMed ID: 1869527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mutations in the central helix of troponin C on its biological activity.
    Sheng ZL; Francois JM; Hitchcock-DeGregori SE; Potter JD
    J Biol Chem; 1991 Mar; 266(9):5711-5. PubMed ID: 2005108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction.
    Sweeney HL; Brito RM; Rosevear PR; Putkey JA
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9538-42. PubMed ID: 2263608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-cross-linking of rabbit skeletal troponin I deletion mutants with troponin C and its thiol mutants: the inhibitory region enhances binding of troponin I fragments to troponin C.
    Jha PK; Mao C; Sarkar S
    Biochemistry; 1996 Aug; 35(34):11026-35. PubMed ID: 8780504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate contributions of Tyr10 and Tyr109 to fluorescence intensity of rabbit skeletal muscle troponin C identified using a genetically engineered mutant.
    Keleti D; Rao VG; Su H; Akella AB; Ding XL; Gulati J
    FEBS Lett; 1994 Nov; 354(2):135-9. PubMed ID: 7957912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of deletion of the amino-terminal helix on troponin C function and stability.
    Smith L; Greenfield NJ; Hitchcock-DeGregori SE
    J Biol Chem; 1994 Apr; 269(13):9857-63. PubMed ID: 8144578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+, Mg2+, and troponin I inhibitory peptide binding to a Phe-154 to Trp mutant of chicken skeletal muscle troponin C.
    Chandra M; McCubbin WD; Oikawa K; Kay CM; Smillie LB
    Biochemistry; 1994 Mar; 33(10):2961-9. PubMed ID: 8130210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the regulatory and structural defects of troponin C central helix mutants.
    Dobrowolski Z; Xu GQ; Chen W; Hitchcock-DeGregori SE
    Biochemistry; 1991 Jul; 30(29):7089-96. PubMed ID: 1830216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and sequence of a cDNA clone for rabbit fast skeletal muscle troponin C. Homology with calmodulin and parvalbumin.
    Zot AS; Potter JD; Strauss WL
    J Biol Chem; 1987 Nov; 262(32):15418-21. PubMed ID: 3680204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering.
    Babu A; Su H; Ryu Y; Gulati J
    J Biol Chem; 1992 Aug; 267(22):15469-74. PubMed ID: 1639788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast skeletal muscle skinned fibers and myofibrils reconstituted with N-terminal fluorescent analogues of troponin C.
    Zot HG; Güth K; Potter JD
    J Biol Chem; 1986 Dec; 261(34):15883-90. PubMed ID: 2946678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles.
    Gulati J; Sonnenblick E; Babu A
    J Physiol; 1991 Sep; 441():305-24. PubMed ID: 1816378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependence of structural changes in troponin-C in demembranated fibers of rabbit psoas muscle.
    Allen TS; Yates LD; Gordon AM
    Biophys J; 1992 Feb; 61(2):399-409. PubMed ID: 1547328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.