These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 8366077)
1. Probing the role of the carboxyl-terminal region of ferredoxin-NADP+ reductase by site-directed mutagenesis and deletion analysis. Orellano EG; Calcaterra NB; Carrillo N; Ceccarelli EA J Biol Chem; 1993 Sep; 268(26):19267-73. PubMed ID: 8366077 [TBL] [Abstract][Full Text] [Related]
2. The role of cysteine residues of spinach ferredoxin-NADP+ reductase As assessed by site-directed mutagenesis. Aliverti A; Piubelli L; Zanetti G; Lübberstedt T; Herrmann RG; Curti B Biochemistry; 1993 Jun; 32(25):6374-80. PubMed ID: 8518283 [TBL] [Abstract][Full Text] [Related]
3. Involvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase: structure--function relationship as studied by site-directed mutagenesis and X-ray crystallography. Aliverti A; Bruns CM; Pandini VE; Karplus PA; Vanoni MA; Curti B; Zanetti G Biochemistry; 1995 Jul; 34(26):8371-9. PubMed ID: 7677850 [TBL] [Abstract][Full Text] [Related]
4. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. Piubelli L; Aliverti A; Arakaki AK; Carrillo N; Ceccarelli EA; Karplus PA; Zanetti G J Biol Chem; 2000 Apr; 275(14):10472-6. PubMed ID: 10744737 [TBL] [Abstract][Full Text] [Related]
5. Involvement of lysine-88 of spinach ferredoxin-NADP+ reductase in the interaction with ferredoxin. Aliverti A; Corrado ME; Zanetti G FEBS Lett; 1994 May; 343(3):247-50. PubMed ID: 8174709 [TBL] [Abstract][Full Text] [Related]
6. Expression, assembly and secretion of a fully active plant ferredoxin-NADP+ reductase by Saccharomyces cerevisiae. Ottado J; Arakaki AK; Calcaterra NB; Ceccarelli EA Eur J Biochem; 1994 Oct; 225(2):677-85. PubMed ID: 7957183 [TBL] [Abstract][Full Text] [Related]
7. Expression, assembly, and processing of an active plant ferredoxin-NADP+ oxidoreductase and its precursor protein in Escherichia coli. Ceccarelli EA; Viale AM; Krapp AR; Carrillo N J Biol Chem; 1991 Aug; 266(22):14283-7. PubMed ID: 1907276 [TBL] [Abstract][Full Text] [Related]
8. One-step purification of plant ferredoxin-NADP+ oxidoreductase expressed in Escherichia coli as fusion with glutathione S-transferase. Serra EC; Carrillo N; Krapp AR; Ceccarelli EA Protein Expr Purif; 1993 Dec; 4(6):539-46. PubMed ID: 8286951 [TBL] [Abstract][Full Text] [Related]
9. Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase. Calcaterra NB; Picó GA; Orellano EG; Ottado J; Carrillo N; Ceccarelli EA Biochemistry; 1995 Oct; 34(39):12842-8. PubMed ID: 7548039 [TBL] [Abstract][Full Text] [Related]
10. Swapping FAD binding motifs between plastidic and bacterial ferredoxin-NADP(H) reductases. Musumeci MA; Botti H; Buschiazzo A; Ceccarelli EA Biochemistry; 2011 Mar; 50(12):2111-22. PubMed ID: 21306142 [TBL] [Abstract][Full Text] [Related]
11. Reduction of the pea ferredoxin-NADP(H) reductase catalytic efficiency by the structuring of a carboxyl-terminal artificial metal binding site. Catalano-Dupuy DL; Orecchia M; Rial DV; Ceccarelli EA Biochemistry; 2006 Nov; 45(46):13899-909. PubMed ID: 17105208 [TBL] [Abstract][Full Text] [Related]
12. High-resolution studies of hydride transfer in the ferredoxin:NADP Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258 [TBL] [Abstract][Full Text] [Related]
13. Studies on the holoenzyme biogenesis of the spinach ferredoxin-NADP+ reductase. Aliverti A; Ferretti L; Zanetti G Arch Biochem Biophys; 1992 Dec; 299(2):340-3. PubMed ID: 1444474 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii. Sridhar Prasad G; Kresge N; Muhlberg AB; Shaw A; Jung YS; Burgess BK; Stout CD Protein Sci; 1998 Dec; 7(12):2541-9. PubMed ID: 9865948 [TBL] [Abstract][Full Text] [Related]
15. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase. Meints CE; Simtchouk S; Wolthers KR FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101 [TBL] [Abstract][Full Text] [Related]
16. Interaction of positively charged amino acid residues of recombinant, cyanobacterial ferredoxin:NADP+ reductase with ferredoxin probed by site directed mutagenesis. Schmitz S; Martínez-Júlvez M; Gómez-Moreno C; Böhme H Biochim Biophys Acta; 1998 Jan; 1363(1):85-93. PubMed ID: 9511808 [TBL] [Abstract][Full Text] [Related]
17. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Karplus PA; Daniels MJ; Herriott JR Science; 1991 Jan; 251(4989):60-6. PubMed ID: 1986412 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+. Nascimento AS; Catalano-Dupuy DL; Bernardes A; Neto Mde O; Santos MA; Ceccarelli EA; Polikarpov I BMC Struct Biol; 2007 Oct; 7():69. PubMed ID: 17958910 [TBL] [Abstract][Full Text] [Related]
19. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity. Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622 [TBL] [Abstract][Full Text] [Related]
20. Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase. Aliverti A; Deng Z; Ravasi D; Piubelli L; Karplus PA; Zanetti G J Biol Chem; 1998 Dec; 273(51):34008-15. PubMed ID: 9852055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]