These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8366989)

  • 21. Angiotensin II-dependent proximal tubule sodium transport requires receptor-mediated endocytosis.
    Schelling JR; Linas SL
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C669-75. PubMed ID: 8166230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat.
    Humphreys MH; Etheredge SB; Lin SY; Ribstein J; Marton LJ
    Am J Physiol; 1988 Aug; 255(2 Pt 2):F270-7. PubMed ID: 3136663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of amiloride on the compensatory renal growth that follows uninephrectomy in mice.
    Grantham JJ; Grantham JA; Donoso VS; Cragoe EJ
    J Lab Clin Med; 1989 Aug; 114(2):129-34. PubMed ID: 2546998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional correlates of compensatory renal hypertrophy.
    Hayslett JP; Kashgarian M; Epstein FH
    J Clin Invest; 1968 Apr; 47(4):774-99. PubMed ID: 5641618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective antagonism of the AT1 receptor inhibits the effect of angiotensin II on DNA and protein synthesis of rat proximal tubular cells.
    Weerackody RP; Chatterjee PK; Mistry SK; McLaren J; Hawksworth GM; McLay JS
    Exp Nephrol; 1997; 5(3):253-62. PubMed ID: 9208286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular pH regulation in cultured renal proximal tubule cells in different stages of maturation.
    Ekblad H; Aperia A; Larsson SH
    Am J Physiol; 1992 Oct; 263(4 Pt 2):F716-21. PubMed ID: 1329559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of functional loading on the operation of the active transport system for organic acids in the proximal kidney tubules of rats after unilateral nephrectomy and in the early postnatal period].
    Rebane EN; Bresler VM
    Tsitologiia; 1984 Oct; 26(10):1199-203. PubMed ID: 6515720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proximal tubular cells in primary culture.
    Fine LG; Sakhrani LM
    Miner Electrolyte Metab; 1986; 12(1):51-7. PubMed ID: 2421148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Work of the active transport system of organic acids in the kidney proximal tubules of rats with compensatory hypertrophy].
    Rebane EN; Bresler VM
    Tsitologiia; 1984 May; 26(5):617-22. PubMed ID: 6474578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of proximal tubular structure and function: insights into compensatory renal hypertrophy.
    Fine LG; Bradley T
    Fed Proc; 1985 Aug; 44(11):2723-7. PubMed ID: 2410299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of testosterone on compensatory renal hypertrophy in the rat.
    Schlondorff D; Trizna W; De Rosis E; Korth-Schutz S
    Endocrinology; 1977 Dec; 101(6):1670-5. PubMed ID: 590183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercuric chloride-induced cytotoxicity and compensatory hypertrophy in rat kidney proximal tubular cells.
    Lash LH; Zalups RK
    J Pharmacol Exp Ther; 1992 May; 261(2):819-29. PubMed ID: 1578387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta 2-adrenergic function in cultured rat proximal tubule epithelial cells.
    Singh H; Linas S
    Am J Physiol; 1996 Jul; 271(1 Pt 2):F71-7. PubMed ID: 8760245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic alpha-1 and alpha-2 adrenergic stimulation of rat proximal nephron Na+/H+ exchange.
    Gesek FA; Cragoe EJ; Strandhoy JW
    J Pharmacol Exp Ther; 1989 Jun; 249(3):694-700. PubMed ID: 2567349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of renal "work" in compensatory kidney growth.
    Katz AI; Toback FG; Lindheimer MD
    Yale J Biol Med; 1978; 51(3):331-7. PubMed ID: 366925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium transport in rat renal papillary collecting tubule cells in culture.
    Konieczkowski M; Dunn MJ
    J Cell Physiol; 1988 May; 135(2):235-43. PubMed ID: 3372595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.
    Mitsuoka K; Shirasaka Y; Fukushi A; Sato M; Nakamura T; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2009 Apr; 30(3):126-37. PubMed ID: 19322909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.
    Bevington A; Millwater CJ; Walls J
    Exp Nephrol; 1994; 2(5):273-80. PubMed ID: 7812732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals.
    Hannken T; Schroeder R; Stahl RA; Wolf G
    Kidney Int; 1998 Dec; 54(6):1923-33. PubMed ID: 9853257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissimilar alterations of sodium-coupled uptake by platinum-coordination complexes in renal proximal tubular cells in primary culture.
    Courjault-Gautier F; Hoet D; Leroy D; Toutain HJ
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1097-104. PubMed ID: 7932157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.