BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 8367587)

  • 81. Kinetics of formation of exchanges and rejoining of breaks in human G0 and G2 lymphocytes after low-LET radiation.
    Sipi P; Lindholm C; Salomaa S
    Int J Radiat Biol; 2000 Jun; 76(6):823-30. PubMed ID: 10902737
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Repair of DNA double-strand breaks: errors encountered in the determination of half-life times in pulsed-field gel electrophoresis and neutral filter elution.
    Cedervall B; Källman P; Dewey WC
    Radiat Res; 1995 Apr; 142(1):23-8. PubMed ID: 7899556
    [TBL] [Abstract][Full Text] [Related]  

  • 83. G1 Premature Chromosome Condensation (PCC) Assay.
    Okayasu R; Liu C
    Methods Mol Biol; 2019; 1984():31-38. PubMed ID: 31267417
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Repair and misrepair of heavy-ion-induced chromosomal damage.
    Goodwin E; Blakely E; Ivery G; Tobias C
    Adv Space Res; 1989; 9(10):83-9. PubMed ID: 11537318
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Lethal and potentially lethal lesions induced by radiation--a unified repair model.
    Curtis SB
    Radiat Res; 1986 May; 106(2):252-70. PubMed ID: 3704115
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Two-lesion kinetic model of double-strand break rejoining and cell killing.
    Stewart RD
    Radiat Res; 2001 Oct; 156(4):365-78. PubMed ID: 11554848
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A comparison of chromosome repair kinetics in G(0) and G(1) reveals that enhanced repair fidelity under noncycling conditions accounts for increased potentially lethal damage repair.
    Liu C; Kawata T; Shigematsu N; Cucinotta F; George K; Saito M; Uno T; Isobe K; Ito H
    Radiat Res; 2010 Nov; 174(5):566-73. PubMed ID: 20954858
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Rejoining of radiation-induced DNA double-strand breaks: pulsed-field electrophoresis analysis of fragment size distributions after incubation for repair.
    Gauter B; Zlobinskaya O; Weber KJ
    Radiat Res; 2002 Jun; 157(6):721-33. PubMed ID: 12005552
    [TBL] [Abstract][Full Text] [Related]  

  • 89. G2 Premature Chromosome Condensation/Chromosome Aberration Assay: Drug-Induced Premature Chromosome Condensation (PCC) Protocols and Cytogenetic Approaches in Mitotic Chromosome and Interphase Chromatin for Radiation Biology.
    Gotoh E
    Methods Mol Biol; 2019; 1984():47-60. PubMed ID: 31267419
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Chinese hamster V79 cells harbor potentially lethal damage which is neither fixed nor repaired for long times after attaining maximal survival under growth conditions.
    Reddy NM; Mayer PJ; Nori D; Lange CS
    Radiat Res; 1995 Mar; 141(3):252-8. PubMed ID: 7871152
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Gamma radiation as a probe of chromatin structure: damage to and repair of active chromatin in the metaphase chromosome.
    Oleinick NL; Chiu SM; Friedman LR
    Radiat Res; 1984 Jun; 98(3):629-41. PubMed ID: 6729055
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells.
    Wong RS; Dynlacht JR; Cedervall B; Dewey WC
    Int J Radiat Biol; 1995 Aug; 68(2):141-52. PubMed ID: 7658139
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Comparison between the alkaline unwinding technique and neutral filter elution using CHO, V79 and EAT cells.
    Dikomey E; Flentje M; Dahm-Daphi J
    Int J Radiat Biol; 1995 Mar; 67(3):269-75. PubMed ID: 7897275
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Radiation-induced chromosomal breakage and rejoining in interphase-metaphase chromosomes of human lymphocytes.
    Vyas RC; Darroudi F; Natarajan AT
    Mutat Res; 1991 Jul; 249(1):29-35. PubMed ID: 2067541
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Relationship between double strand break rejoining and G2 block formation in V79 cells.
    Weibezahn KF; Coquerelle TM
    Radiat Environ Biophys; 1986; 25(1):13-21. PubMed ID: 3714971
    [TBL] [Abstract][Full Text] [Related]  

  • 96. DNA double strand breaks and chromosomal aberrations.
    Obe G; Durante M
    Cytogenet Genome Res; 2010; 128(1-3):8-16. PubMed ID: 20339289
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Determination of the radiation sensitivity of the stromal cells in the murine long-term bone marrow culture by measuring the induction and rejoining of interphase chromosome breaks.
    Kodym R; Hoerth E
    Int J Radiat Oncol Biol Phys; 1993 Apr; 25(5):829-33. PubMed ID: 8478233
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Visualization of the interphase chromosomes of Ornithogalum virens and Muntiacus muntjak.
    Brown DB; Stack SM; Mitchell JB; Bedford JS
    Cytobiologie; 1979 Feb; 18(3):398-412. PubMed ID: 428620
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Premature chromosome condensation assay to study influence of high-level natural radiation on the initial DNA double strand break repair in human G
    Vivek Kumar PR; Karuppasamy CV; Ramachandran EN; Anil Kumar V; Jaikrishan G; Das B
    Mutat Res Genet Toxicol Environ Mutagen; 2020 Jan; 849():503141. PubMed ID: 32087855
    [TBL] [Abstract][Full Text] [Related]  

  • 100. X-ray-related potentially lethal damage expressed by chromosome condensation and the influence of caffeine.
    Sasaki H; Nishimoto T
    Radiat Res; 1989 Oct; 120(1):72-82. PubMed ID: 2798783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.