These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 836785)

  • 1. A novel approach to water proton relaxation in paramagnetic ion-macromolecule complexes.
    Burton DR; Dwek RA; Forsén S; Karlström G
    Biochemistry; 1977 Jan; 16(2):250-4. PubMed ID: 836785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The determination of molecular-motion parameters from proton-relaxation-enhancement measurements in a number of Gd(III) - antibody-fragment complexes. A comparative study.
    Burton DR; Forsén S; Karlström G; Dwek RA; McLaughlin AC; Wain-Hobson S
    Eur J Biochem; 1977 May; 75(2):445-53. PubMed ID: 560299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding of lanthanides to non-immune rabbit immunoglobulin G and its fragments.
    Dower SK; Dwek RA; McLaughlin AC; Mole LE; Press EM; Sunderland CA
    Biochem J; 1975 Jul; 149(1):73-82. PubMed ID: 242326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difficulties in determining accurate molecular motion parameters from proton relaxation enhancement measurements as illustrated by the immunoglobulin G-Gd(III) system.
    Burton DR; Forsén S; Karlström G; Dwek RA; McLaughlin AC; Wain-Hobson S
    Eur J Biochem; 1976 Dec; 71(2):519-28. PubMed ID: 188653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of gadolinium as a probe in the Fc region of a homogeneous anti-(type-III pneumococcal polysaccharide) antibody.
    Willan KJ; Wallace KH; Jaton JC; Dwek RA
    Biochem J; 1977 Feb; 161(2):205-11. PubMed ID: 15542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative studies of hydrodynamic effects and cross-relaxation in protein solutions and tissues with proton and deuteron longitudinal relaxation times.
    Zhong JH; Gore JC; Armitage IM
    Magn Reson Med; 1990 Feb; 13(2):192-203. PubMed ID: 2156124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of paramagnetic agents by off-resonance rotating frame technique.
    Zhang H; Xie Y
    J Magn Reson; 2006 Dec; 183(2):213-27. PubMed ID: 16979920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton nuclear magnetic resonance studies of human immunoglobulins: conformation of the hinge region of the IgG1 immunoglobulin.
    Arata Y; Honzawa M; Shimizu A
    Biochemistry; 1980 Oct; 19(22):5130-5. PubMed ID: 6257277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of water-proton relaxation in enzyme paramagnetic-ion complexes. 1. The Gd(3)-lysozyme complex.
    Jones R; Dwek RA
    Eur J Biochem; 1974 Sep; 47(2):271-83. PubMed ID: 4370484
    [No Abstract]   [Full Text] [Related]  

  • 10. Protein rotational relaxation as studied by solvent 1H and 2H magnetic relaxation.
    Hallenga K; Koenig SH
    Biochemistry; 1976 Sep; 15(19):4255-64. PubMed ID: 963035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies.
    Villafranca JJ; Ash DE; Wedler FC
    Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton and deuteron relaxation of muscle water over wide ranges of resonance frequencies.
    Fung BM
    Biophys J; 1977 May; 18(2):235-9. PubMed ID: 861361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase.
    Stephens EM; Grisham CM
    Biochemistry; 1979 Oct; 18(22):4876-85. PubMed ID: 228703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of glutamine synthetase bound lanthanide(III) ions using NMR relaxation and lanthanide(III) luminescence techniques.
    Eads CD; Mulqueen P; Horrocks WD; Villafranca JJ
    Biochemistry; 1985 Feb; 24(5):1221-6. PubMed ID: 2869779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution.
    Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE
    Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation.
    Koenig SH; Hallenga K; Shporer M
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2667-71. PubMed ID: 1058481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2-: a variable-temperature 17O NMR study.
    Lee TM; Cheng TH; Ou MH; Chang CA; Liu GC; Wang YM
    Magn Reson Chem; 2004 Mar; 42(3):329-36. PubMed ID: 14971018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classes of hydration sites at protein-water interfaces: the source of contrast in magnetic resonance imaging.
    Koenig SH
    Biophys J; 1995 Aug; 69(2):593-603. PubMed ID: 8527674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein binding to lanthanide(III) complexes can reduce the water exchange rate at the lanthanide.
    Zech SG; Eldredge HB; Lowe MP; Caravan P
    Inorg Chem; 2007 Apr; 46(9):3576-84. PubMed ID: 17425306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation.
    Van-Quynh A; Willson S; Bryant RG
    Biophys J; 2003 Jan; 84(1):558-63. PubMed ID: 12524308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.