These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 836789)

  • 1. Phosphorylation and dephosphorylation of histone (V (H5): controlled condensation of avian erythrocyte chromatin. Appendix: Phosphorylation and dephosphorylation of histone H5. II. Circular dichroic studies.
    Wagner TE; Hartford JB; Serra M; Vandegrift V; Sung MT
    Biochemistry; 1977 Jan; 16(2):286-90. PubMed ID: 836789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of histones in avian erythroid cells.
    Sung MT; Harford J; Bundman M; Vidalakas G
    Biochemistry; 1977 Jan; 16(2):279-85. PubMed ID: 836788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sites of in vivo phosphorylation of histone H5.
    Sung MT; Freedlender EF
    Biochemistry; 1978 May; 17(10):1884-90. PubMed ID: 656368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studies.
    Kaplan LJ; Bauer R; Morrison E; Langan TA; Fasman GD
    J Biol Chem; 1984 Jul; 259(14):8777-85. PubMed ID: 6746623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of exogenous histone H5 on integration of histone H1 in rat liver chromatin. Correlations with aberrant epsilon-N-methylation of histone H1.
    Byvoet P; Barber M; Amidei K; Lowell N; Trudeau W
    Biochim Biophys Acta; 1986 Jun; 867(3):163-75. PubMed ID: 3087426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The absence of cell-specific histone in erythroid cell from rabbit marrow.
    Adams GH; Neelin JM
    Can J Biochem; 1976 Jun; 54(6):571-7. PubMed ID: 1276983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation studies of histone H1(0) in comparison with histones H1 and H5.
    Cary PD; Hines ML; Bradbury EM; Smith BJ; Johns EW
    Eur J Biochem; 1981 Nov; 120(2):371-7. PubMed ID: 7318833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Existence of differences in repressor properties between serine-rich histones (H5, F2c) from immature and mature pigeon erythroid cells.
    Gasaryan KG; Andreeva NB; Vishnevskaya TY
    Differentiation; 1978 Mar; 10(2):123-7. PubMed ID: 640304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Features of the chromatin structure of erythrocytes depending on the properties of lysine-rich histones].
    Kostyleva EI; Selivanova GV; Zalenskaia IA
    Mol Biol (Mosk); 1989; 23(1):73-9. PubMed ID: 2544799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone phosphorylation in native chromatin induces local structural changes as probed by electric birefringence.
    Marion C; Martinage A; Tirard A; Roux B; Daune M; Mazen A
    J Mol Biol; 1985 Nov; 186(2):367-79. PubMed ID: 4087298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the domains of histones H1 and H5 in the structural organization of soluble chromatin.
    Thoma F; Losa R; Koller T
    J Mol Biol; 1983 Jul; 167(3):619-40. PubMed ID: 6876160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of chromatin composition with metabolic changes in nuclei of primitive erythroid cells from chicken embryos.
    Urban MK; Neelin JM; Betz TW
    Can J Biochem; 1980 Sep; 58(9):726-31. PubMed ID: 6161682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies.
    Cowman MK; Fasman GD
    Biochemistry; 1980 Feb; 19(3):532-41. PubMed ID: 7356945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H5-chromatin interactions in situ are strongly modulated by H5 C-terminal phosphorylation.
    Kostova NN; Srebreva L; Markov DV; Sarg B; Lindner HH; Rundquist I
    Cytometry A; 2013 Mar; 83(3):273-9. PubMed ID: 23081878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time of the erythrocyte-specific histone fraction F2c synthesis during erythropoiesis in birds.
    Medvedev ZhA; Kirpicheva ND
    Mol Biol; 1972; 6(4):488-93. PubMed ID: 4659310
    [No Abstract]   [Full Text] [Related]  

  • 16. Modification of the lysine residues of histones H1 and H5: effects on structure and on the binding to chromatin.
    Jordano J; Barbero JL; Montero F; Palacián E
    Mol Biol Rep; 1985 Apr; 10(3):147-51. PubMed ID: 3929068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of serine-rich histone (H5) in bird erythrocyte genome inactivation].
    Andreeva NB; Vishnevskaia TIu; Gazarian KG
    Mol Biol (Mosk); 1978; 12(1):123-34. PubMed ID: 634279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel nonhistone protein (MENT) promotes nuclear collapse at the terminal stage of avian erythropoiesis.
    Grigoryev SA; Solovieva VO; Spirin KS; Krasheninnikov IA
    Exp Cell Res; 1992 Feb; 198(2):268-75. PubMed ID: 1729133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupled synthesis of H1o-like histone H1s during late erythropoiesis in Xenopus laevis.
    Rutledge RG; Neelin JM; Seligy VL
    Eur J Biochem; 1984 Oct; 144(1):191-8. PubMed ID: 6434311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H1 and chromatin higher order structure. Does histone H1 exhibit specific self-association?
    Russo E; Giancotti V; Crane-Robinson C; Geraci G
    Int J Biochem; 1983; 15(4):487-93. PubMed ID: 6852347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.