These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8368277)

  • 1. Computer modeling of the oxygen supply and demand of cells of the avian growth cartilage.
    Haselgrove JC; Shapiro IM; Silverton SF
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C497-506. PubMed ID: 8368277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of oxygen tension on proteoglycan synthesis and aggregation in mammalian growth plate chondrocytes.
    Clark CC; Tolin BS; Brighton CT
    J Orthop Res; 1991 Jul; 9(4):477-84. PubMed ID: 2045974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-modeling of oxygen supply to cartilage: addition of a compartmental model.
    Ye GF; Silverton SF
    Adv Exp Med Biol; 1994; 361():31-9. PubMed ID: 7597953
    [No Abstract]   [Full Text] [Related]  

  • 4. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism.
    Rajpurohit R; Koch CJ; Tao Z; Teixeira CM; Shapiro IM
    J Cell Physiol; 1996 Aug; 168(2):424-32. PubMed ID: 8707878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional model of tissue oxygen gradients in avian growth cartilage.
    Silverton SF; Pacifici M; Haselgrove JC; Colodny SH; Forster RE
    Adv Exp Med Biol; 1990; 277():759-65. PubMed ID: 2096676
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxygen gradients in two regions of the epiphyseal growth plate.
    Silverton SF; Wagerle LC; Robiolo ME; Haselgrove JC; Forster RE
    Adv Exp Med Biol; 1989; 248():809-15. PubMed ID: 2782190
    [No Abstract]   [Full Text] [Related]  

  • 7. Chondrocytes in the endochondral growth cartilage are not hypoxic.
    Shapiro IM; Mansfield KD; Evans SM; Lord EM; Koch CJ
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1134-43. PubMed ID: 9142837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling.
    Malda J; Rouwkema J; Martens DE; Le Comte EP; Kooy FK; Tramper J; van Blitterswijk CA; Riesle J
    Biotechnol Bioeng; 2004 Apr; 86(1):9-18. PubMed ID: 15007836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of growth plate mitochondria.
    Stambough JL; Brighton CT; Iannotti JP; Storey BT
    J Orthop Res; 1984; 2(3):235-46. PubMed ID: 6092592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes.
    Hatori M; Klatte KJ; Teixeira CC; Shapiro IM
    J Bone Miner Res; 1995 Dec; 10(12):1960-8. PubMed ID: 8619377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic structures of epiphyseal plate chondrocytes. Quantitative evaluation using electron micrographs of rat costochondral junctions with special reference to the fate of hypertrophic cells.
    Brighton CT; Sugioka Y; Hunt RM
    J Bone Joint Surg Am; 1973 Jun; 55(4):771-84. PubMed ID: 4283751
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the growth plate-bone interphase region using cryo-FIB SEM 3D volume imaging.
    Varsano N; Kahil K; Haimov H; Rechav K; Addadi L; Weiner S
    J Struct Biol; 2021 Dec; 213(4):107781. PubMed ID: 34411695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological observations concerning the pattern of mineralization of the normal and the rachitic chick growth cartilage.
    Boyde A; Shapiro IM
    Anat Embryol (Berl); 1987; 175(4):457-66. PubMed ID: 3578825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox studies of the epiphyseal growth cartilage: pyridine nucleotide metabolism and the development of mineralization.
    Kakuta S; Golub EE; Haselgrove JC; Chance B; Frasca P; Shapiro IM
    J Bone Miner Res; 1986 Oct; 1(5):433-40. PubMed ID: 3503558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominant expression of H3K9 methyltransferases in prehypertrophic and hypertrophic chondrocytes during mouse growth plate cartilage development.
    Ideno H; Shimada A; Imaizumi K; Kimura H; Abe M; Nakashima K; Nifuji A
    Gene Expr Patterns; 2013; 13(3-4):84-90. PubMed ID: 23333759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.
    Zhou S; Cui Z; Urban JP
    Arthritis Rheum; 2004 Dec; 50(12):3915-24. PubMed ID: 15593204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of chicken 75-kDa gelatinase B-like enzyme in perivascular chondrocytes suggests its role in vascularization of the growth plate.
    Tong A; Reich A; Genin O; Pines M; Monsonego-Ornan E
    J Bone Miner Res; 2003 Aug; 18(8):1443-52. PubMed ID: 12929933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Countercurrent centrifugal elutriation. High-resolution method for the separation of growth-plate chondrocytes.
    O'Keefe RJ; Crabb ID; Puzas JE; Rosier RN
    J Bone Joint Surg Am; 1989 Apr; 71(4):607-20. PubMed ID: 2703520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and localization of basic fibroblast growth factor-immunoreactive substance in the epiphyseal growth plate.
    Twal WO; Vasilatos-Younken R; Gay CV; Leach RM
    J Bone Miner Res; 1994 Nov; 9(11):1737-44. PubMed ID: 7863825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic ionized calcium concentration in isolated chondrocytes from each zone of the growth plate.
    Iannotti JP; Brighton CT
    J Orthop Res; 1989; 7(4):511-8. PubMed ID: 2738769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.