These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8368280)

  • 1. Effects of a Shaker K+ channel peptide and trypsin on a K+ channel in Necturus enterocytes.
    Mayorga-Wark O; Costantin J; Dubinsky WP; Schultz SG
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C541-7. PubMed ID: 8368280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoisolation of a K+ channel from basolateral membranes of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Garretson LT; Schultz SG
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C548-55. PubMed ID: 8368281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide from the Drosophila Shaker K+ channel inhibits a voltage-gated K+ channel in basolateral membranes of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1770-4. PubMed ID: 1542670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of potassium currents seen in isolated Necturus enterocytes with the single-electrode voltage-clamp technique.
    Valverde MA; Sheppard DN; Giraldez F; Sepúlveda FV
    J Physiol; 1991 Feb; 433():645-61. PubMed ID: 1841961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A peptide derived from the Shaker B K+ channel produces short and long blocks of reconstituted Ca(2+)-dependent K+ channels.
    Foster CD; Chung S; Zagotta WN; Aldrich RW; Levitan IB
    Neuron; 1992 Aug; 9(2):229-36. PubMed ID: 1497892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of a KATP channel from basolateral membranes of Necturus enterocytes.
    Mayorga-Wark O; Dubinsky WP; Schultz SG
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C464-71. PubMed ID: 7653528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium currents of isolated Necturus enterocytes: a whole-cell patch-clamp study.
    Sheppard DN; Valverde MA; Giraldez F; Sepúlveda FV
    J Physiol; 1991 Feb; 433():663-76. PubMed ID: 1841962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB.
    Zagotta WN; Hoshi T; Aldrich RW
    Science; 1990 Oct; 250(4980):568-71. PubMed ID: 2122520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium channels in basolateral membrane vesicles from necturus enterocytes: stretch and ATP sensitivity.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C634-8. PubMed ID: 10942713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal blockade of a Ca(2+)-activated K+ channel by Shaker B inactivating "ball" peptide.
    Toro L; Stefani E; Latorre R
    Neuron; 1992 Aug; 9(2):237-45. PubMed ID: 1497893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus enterocytes into planar lipid bilayers.
    Costantin J; Alcalen S; de Souza Otero A; Dubinsky WP; Schultz SG
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5212-6. PubMed ID: 2740353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating currents in Shaker K+ channels. Implications for activation and inactivation models.
    Perozo E; Papazian DM; Stefani E; Bezanilla F
    Biophys J; 1992 Apr; 62(1):160-8; discussion 169-71. PubMed ID: 1600094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels.
    Choi KL; Aldrich RW; Yellen G
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5092-5. PubMed ID: 2052588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels.
    Stocker M; Stühmer W; Wittka R; Wang X; Müller R; Ferrus A; Pongs O
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8903-7. PubMed ID: 1701056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation.
    Molina A; Castellano AG; López-Barneo J
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):361-7. PubMed ID: 9080366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colocalization of glycolytic enzyme activity and KATP channels in basolateral membrane of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Am J Physiol; 1998 Dec; 275(6):C1653-9. PubMed ID: 9843727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium.
    Segal Y; Reuss L
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C56-68. PubMed ID: 2372050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker.
    Demo SD; Yellen G
    Neuron; 1991 Nov; 7(5):743-53. PubMed ID: 1742023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.