These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8368297)

  • 1. Regulation of hepatic glucose production during exercise in humans: role of sympathoadrenergic activity.
    Kjaer M; Engfred K; Fernandes A; Secher NH; Galbo H
    Am J Physiol; 1993 Aug; 265(2 Pt 1):E275-83. PubMed ID: 8368297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique.
    Sigal RJ; Fisher S; Halter JB; Vranic M; Marliss EB
    Diabetes; 1996 Feb; 45(2):148-56. PubMed ID: 8549858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade.
    Bjorkman O; Miles P; Wasserman D; Lickley L; Vranic M
    J Clin Invest; 1988 Jun; 81(6):1759-67. PubMed ID: 3290252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose homeostasis during exercise in humans with a liver or kidney transplant.
    Kjaer M; Keiding S; Engfred K; Rasmussen K; Sonne B; Kirkegård P; Galbo H
    Am J Physiol; 1995 Apr; 268(4 Pt 1):E636-44. PubMed ID: 7733262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Islet hormonal regulation of glucose turnover during exercise in type 1 diabetes.
    Shilo S; Sotsky M; Shamoon H
    J Clin Endocrinol Metab; 1990 Jan; 70(1):162-72. PubMed ID: 1967178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The direct effects of catecholamines on hepatic glucose production occur via alpha(1)- and beta(2)-receptors in the dog.
    Chu CA; Sindelar DK; Igawa K; Sherck S; Neal DW; Emshwiller M; Cherrington AD
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E463-73. PubMed ID: 10913048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids.
    Ahlborg G; Felig P; Hagenfeldt L; Hendler R; Wahren J
    J Clin Invest; 1974 Apr; 53(4):1080-90. PubMed ID: 4815076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs.
    Wasserman DH; Lickley HL; Vranic M
    J Clin Invest; 1984 Oct; 74(4):1404-13. PubMed ID: 6148356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of compensation for absence of fall in insulin during exercise.
    Wasserman DH; Lacy DB; Colburn CA; Bracy D; Cherrington AD
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E587-97. PubMed ID: 1951683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of liver nerves, glucagon, and adrenaline to the glycaemic response to exercise in rats.
    Van Dijk G; Balkan B; Lindfeldt J; Bouws G; Scheurink AJ; Ahrén B; Steffens AB
    Acta Physiol Scand; 1994 Mar; 150(3):305-13. PubMed ID: 7912034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid and carbohydrate metabolism in IDDM during moderate and intense exercise.
    Raguso CA; Coggan AR; Gastaldelli A; Sidossis LS; Bastyr EJ; Wolfe RR
    Diabetes; 1995 Sep; 44(9):1066-74. PubMed ID: 7657030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of beta-adrenergic mechanisms during exercise in poorly controlled diabetes.
    Wasserman DH; Lickley HL; Vranic M
    J Appl Physiol (1985); 1985 Oct; 59(4):1282-9. PubMed ID: 2865246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose infusion partially attenuates glucose production and increases uptake during intense exercise.
    Manzon A; Fisher SJ; Morais JA; Lipscombe L; Guimond MC; Nessim SJ; Sigal RJ; Halter JB; Vranic M; Marliss EB
    J Appl Physiol (1985); 1998 Aug; 85(2):511-24. PubMed ID: 9688728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Important role of glucagon during exercise in diabetic dogs.
    Wasserman DH; Lickley HL; Vranic M
    J Appl Physiol (1985); 1985 Oct; 59(4):1272-81. PubMed ID: 2865245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of free fatty acids and epinephrine in regulating hepatic glucose production in conscious dogs.
    Chu CA; Galassetti P; Igawa K; Sindelar DK; Neal DW; Burish M; Cherrington AD
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E291-301. PubMed ID: 12531743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucoregulation during rest and exercise in depancreatized dogs: role of the acute presence of insulin.
    Wasserman DH; Bupp JL; Johnson JL; Bracy D; Lacy DB
    Am J Physiol; 1992 May; 262(5 Pt 1):E574-82. PubMed ID: 1590369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-induced decrease in glucagon and pinephrine responses to exercise in man.
    Galbo H; Christensen NJ; Holst JJ
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Apr; 42(4):525-30. PubMed ID: 863812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of glucose ingestion on fuel-hormone response during prolonged exercise.
    Ahlborg G; Felig P
    J Appl Physiol; 1976 Nov; 41(5 Pt. 1):683-8. PubMed ID: 993155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose metabolism during exercise in man: the role of insulin in the regulation of glucose utilization.
    Lavoie C; Ducros F; Bourque J; Langelier H; Chiasson JL
    Can J Physiol Pharmacol; 1997 Jan; 75(1):36-43. PubMed ID: 9101063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamines in prevention of hypoglycemia during exercise in humans.
    Marker JC; Hirsch IB; Smith LJ; Parvin CA; Holloszy JO; Cryer PE
    Am J Physiol; 1991 May; 260(5 Pt 1):E705-12. PubMed ID: 1674642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.