These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8368337)
1. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation. Hoffend J; Cavarape A; Endlich K; Steinhausen M Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337 [TBL] [Abstract][Full Text] [Related]
2. Endothelin and endothelium-derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys. Gulbins E; Hoffend J; Zou AP; Dietrich MS; Schlottmann K; Cavarape A; Steinhausen M J Physiol; 1993 Sep; 469():571-82. PubMed ID: 8271216 [TBL] [Abstract][Full Text] [Related]
3. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118 [TBL] [Abstract][Full Text] [Related]
4. Endothelium modulates renal blood flow but not autoregulation. Beierwaltes WH; Sigmon DH; Carretero OA Am J Physiol; 1992 Jun; 262(6 Pt 2):F943-9. PubMed ID: 1621818 [TBL] [Abstract][Full Text] [Related]
5. The impaired renal vasodilator response attributed to endothelium-derived hyperpolarizing factor in streptozotocin--induced diabetic rats is restored by 5-methyltetrahydrofolate. De Vriese AS; Van de Voorde J; Blom HJ; Vanhoutte PM; Verbeke M; Lameire NH Diabetologia; 2000 Sep; 43(9):1116-25. PubMed ID: 11043857 [TBL] [Abstract][Full Text] [Related]
6. Nitric oxide modulates vascular tone in preglomerular arterioles. Imig JD; Roman RJ Hypertension; 1992 Jun; 19(6 Pt 2):770-4. PubMed ID: 1592479 [TBL] [Abstract][Full Text] [Related]
7. Chronic L-NAME hypertension in rats and autoregulation of juxtamedullary preglomerular vessels. Bouriquet N; Casellas D Am J Physiol; 1995 Aug; 269(2 Pt 2):F190-7. PubMed ID: 7653592 [TBL] [Abstract][Full Text] [Related]
8. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. Baylis C; Harton P; Engels K J Am Soc Nephrol; 1990 Dec; 1(6):875-81. PubMed ID: 2103847 [TBL] [Abstract][Full Text] [Related]
9. Role of endothelium-derived nitric oxide in control of renal microvasculature in aging male rats. Reckelhoff JF; Manning RD Am J Physiol; 1993 Nov; 265(5 Pt 2):R1126-31. PubMed ID: 8238614 [TBL] [Abstract][Full Text] [Related]
10. Role of endothelium-derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. Faraci FM Am J Physiol; 1991 Oct; 261(4 Pt 2):H1038-42. PubMed ID: 1928387 [TBL] [Abstract][Full Text] [Related]
11. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Ohishi K; Carmines PK; Inscho EW; Navar LG Am J Physiol; 1992 Nov; 263(5 Pt 2):F900-6. PubMed ID: 1332506 [TBL] [Abstract][Full Text] [Related]
12. Endothelium-dependent dilation to L-arginine in isolated rat skeletal muscle arterioles. Sun D; Messina EJ; Koller A; Wolin MS; Kaley G Am J Physiol; 1992 Apr; 262(4 Pt 2):H1211-6. PubMed ID: 1566902 [TBL] [Abstract][Full Text] [Related]
13. Chronic EDRF inhibition and hypoxia: effects on pulmonary circulation and systemic blood pressure. Hampl V; Archer SL; Nelson DP; Weir EK J Appl Physiol (1985); 1993 Oct; 75(4):1748-57. PubMed ID: 7506706 [TBL] [Abstract][Full Text] [Related]
14. Effects of endothelium-derived nitric oxide on renal hemodynamics and function in the sheep fetus. Bogaert GA; Kogan BA; Mevorach RA Pediatr Res; 1993 Dec; 34(6):755-61. PubMed ID: 8108188 [TBL] [Abstract][Full Text] [Related]
15. Role of endothelium-derived relaxing factor in the maintenance of renal blood flow in a rodent model of chronic hydronephrosis. Chen RN; Inman SR; Stowe NT; Novick AC Urology; 1995 Sep; 46(3):438-42. PubMed ID: 7660528 [TBL] [Abstract][Full Text] [Related]
16. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits. De Moraes R; Gioseffi G; Nóbrega AC; Tibiriçá E J Appl Physiol (1985); 2004 Aug; 97(2):683-8. PubMed ID: 15090484 [TBL] [Abstract][Full Text] [Related]
17. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Broten TP; Miyashiro JK; Moncada S; Feigl EO Am J Physiol; 1992 May; 262(5 Pt 2):H1579-84. PubMed ID: 1590463 [TBL] [Abstract][Full Text] [Related]
18. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF. Imig JD; Gebremedhin D; Harder DR; Roman RJ Am J Physiol; 1993 Jan; 264(1 Pt 2):H190-5. PubMed ID: 8430846 [TBL] [Abstract][Full Text] [Related]
19. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391 [TBL] [Abstract][Full Text] [Related]
20. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. De Vriese AS; Stoenoiu MS; Elger M; Devuyst O; Vanholder R; Kriz W; Lameire NH Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]