These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The measurement of permeability in single rat venules using the red cell microperfusion technique. Kendall S; Michel CC Exp Physiol; 1995 May; 80(3):359-72. PubMed ID: 7640005 [TBL] [Abstract][Full Text] [Related]
4. Inflammatory changes in permeability and ultrastructure of single vessels in the frog mesenteric microcirculation. Clough G; Michel CC; Phillips ME J Physiol; 1988 Jan; 395():99-114. PubMed ID: 3261792 [TBL] [Abstract][Full Text] [Related]
5. The protein kinase MEK1/2 mediate vascular endothelial growth factor- and histamine-induced hyperpermeability in porcine coronary venules. Wu MH; Yuan SY; Granger HJ J Physiol; 2005 Feb; 563(Pt 1):95-104. PubMed ID: 15539400 [TBL] [Abstract][Full Text] [Related]
6. The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Jacob M; Bruegger D; Rehm M; Stoeckelhuber M; Welsch U; Conzen P; Becker BF Cardiovasc Res; 2007 Feb; 73(3):575-86. PubMed ID: 17196565 [TBL] [Abstract][Full Text] [Related]
7. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. Michel CC J Physiol; 1980 Dec; 309():341-55. PubMed ID: 6973022 [TBL] [Abstract][Full Text] [Related]
8. Adaptation of coronary microvascular exchange in arterioles and venules to exercise training and a role for sex in determining permeability responses. Huxley VH; Wang JJ; Sarelius IH Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1196-205. PubMed ID: 17434979 [TBL] [Abstract][Full Text] [Related]
9. Differential coronary microvascular exchange responses to adenosine: roles of receptor and microvessel subtypes. Wang J; Whitt SP; Rubin LJ; Huxley VH Microcirculation; 2005 Jun; 12(4):313-26. PubMed ID: 16020078 [TBL] [Abstract][Full Text] [Related]
11. Sexual dimorphism in the permeability response of coronary microvessels to adenosine. Huxley VH; Wang J; Whitt SP Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H2006-13. PubMed ID: 15563527 [TBL] [Abstract][Full Text] [Related]
12. Graded modulation of frog microvessel permeability to albumin using ionophore A23187. Curry FE; Joyner WL; Rutledge JC Am J Physiol; 1990 Feb; 258(2 Pt 2):H587-98. PubMed ID: 2106799 [TBL] [Abstract][Full Text] [Related]
13. The effects of chemical fixation on the permeability of frog mesenteric capillaries. Clough G; Michel CC J Physiol; 1987 Nov; 392():463-74. PubMed ID: 3128658 [TBL] [Abstract][Full Text] [Related]
14. Hydraulic and diffusional permeabilities of isolated outer medullary descending vasa recta from the rat. Turner MR; Pallone TL Am J Physiol; 1997 Jan; 272(1 Pt 2):H392-400. PubMed ID: 9038961 [TBL] [Abstract][Full Text] [Related]
15. Basal and adenosine-mediated protein flux from isolated coronary arterioles. Huxley VH; Williams DA Am J Physiol; 1996 Sep; 271(3 Pt 2):H1099-108. PubMed ID: 8853347 [TBL] [Abstract][Full Text] [Related]
16. Enhanced fluid uptake in frog mesenteric capillaries associated with plasmin perfusion. Clough G; Michel C J Physiol; 1991 Mar; 434():11-22. PubMed ID: 1827153 [TBL] [Abstract][Full Text] [Related]